• Title/Summary/Keyword: MPCM

Search Result 12, Processing Time 0.025 seconds

An Experimental Study for Manufacturing MPCM Slurry and Its Application to a Cooling System (미립캡슐잠열재 제조 및 축열식 냉방기 적용실험)

  • 이효진;최준규;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.352-359
    • /
    • 2003
  • The present study has been conducted for manufacturing MPCM (microencapsulated phase change material) slurry with in-situ polymerization and proving their applicabilities for tooling system. The surface of MPCM is composed of melamine, while tetradecane, paraffin wax, is centered in the MPCM. The produced capsules are observed by the optical microscope and SEM for superficial shapes. Their thermal properties are measured by DSC. Their size distributions are observed by FA particle analyzer. A narrow size distribution from 1 to 10 ${\mu}{\textrm}{m}$ with 5 ${\mu}{\textrm}{m}$ of average diameter was observed. Melting temperature was 6.7$^{\circ}C$. The durability of MPCM was tested with various types of pump such as centrifugal, peristaltic, and mono pumps. During 10000 cycles the fraction of broken capsules was smaller than 6% for the centrifugal and peristaltic pumps, while bigger value of 8% for the mono pump. A cooling system, which adopted MPCM slurry as a media for transporting cold thermal energy, was designed to investigate the performance of the MPCM. The discharging times of 10 and 20 wt% MPCM slurry were lasted up to 105 and 285 minutes longer, respectively, than the water cooling system.

Simulation of Refrigeration System with MPCM slurry (마이크로캡슐 잠열재 적용 냉동기의 성능 시뮬레이션)

  • Cho, Jong-Min;Kim, Yong-Chan;Cheon, Deok-Woo;Yoon, Joon-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1213-1218
    • /
    • 2006
  • In this study, a numerical model for a vapor compression refrigeration system using MPCM slurries as a secondary fluid through an evaporator was developed, and the system performance was compared with that using water Generally, the MPCM system showed higher performance than the water system. The COP of the MPCM system was higher by 16.6 to 18.6% than that of the water system at all conditions. The MPCM slurry yields better performance in the aspect of heat transfer and heat transportation comparing to the sensible heat transfer medium such as water.

  • PDF

The Utilization of MPCM Slurry for a Cooling System

  • Lee Hyo-Jin;Lee Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.175-183
    • /
    • 2005
  • The present study has been conducted for manufacturing MPCM (microencapsulated phase change material) slurry with in-situ polymerization and proving their applicabilities for cooling system. The tetradecane as a core material of MPCM is coated with melamine. The produced capsules are observed by the optical microscope and SEM for superficial shapes and analysed their properties by DSC and particle size distribution by FA particle analyzer. It is found that narrow size distribution in 1 to $10{\mu}m$ is resulted in $5{\mu}m$ of average diameter and $9^{\circ}C$ melting temperature. The durability of MPCM capsules is tested with various types of pumps such as centrifugal, peristaltic, and mono. For the centrifugal and peristaltic pumps the breakage fraction of the capsules is resulted within $6\%$ during 10,000 cycles, while the mono is over $8\%$. The cooling system, which has adopted MPCM slurry as a medium for transporting cold thermal energy, is designed to investigate the performance of newly developed coolant. The discharging times of cold energy in circulating 10 and $20wt\%$ MPCM slurry are lasted to 105 and 285 minutes, respectively.

Preparation and Thermal Performance Evaluation of Heat Storage paint with MPCM for Reducing Urban Heat Island Effect (도시 열섬현상 저감을 위한 MPCM 적용 축열도료 제조 및 열적성능 평가)

  • Jeong, Su-Gwang;Kang, Yujin;Wi, Seunghwan;Chang, Seong Jin;Kim, Sumin
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.17-24
    • /
    • 2015
  • The formation of heat islands causes high energy demand for space cooling and peak cooling loads in conditioned buildings. High-temperature fluctuations on a building roof may cause mechanical stress and increase surface deterioration. Thermal energy storage (TES) systems using microencapsulated phase-change materials (MPCMs) have been recognized as one of the most advanced energy technologies for enhancing the energy efficiency and sustainability of buildings. In this study, we prepared MPCM/paint composites for mitigating the heat island effect and reducing peak temperature. In addition, we carried out thermal and physical analysis of prepared MPCM composite samples by means of SEM, FTIR spectroscopy, DSC, and TGA. Further, we evaluated the dynamic heat transfer performance of heat-storage tiles painted with 10 g of heat-storage paint. From the obtained results, we deduced that MPCM/hydrophilic paint composites are more applicable to various fields, including the building sector, than MPCM/hydrophobic paint composites. On the basis of SEM and FTIR spectroscopy results, we concluded that materials with hydrophilic properties are more compatible with MPCMs than those with hydrophobic properties. In addition, DSC analysis results revealed that MPCM/hydrophilic paint composites have better compatibility, higher latent heat capacity, and better thermal properties than other composites. TGA results showed that hydrophilic-paint-based composites have higher thermal durability than hydrophobic-paint-based composites. Finally, a lot of MPCM-loaded heat-storage tiles showed lower peak temperatures at all measurement positions.

Performance evaluation of MPCM to apply for radiant floor heating system (바닥난방시스템 적용을 위한 MPCM 성능평가)

  • Jeong, Su-Gwang;Jeon, Ji-Soo;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.475-479
    • /
    • 2012
  • Thermal energy storage (TES) systems using Microencapsulated phase change material (MPCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. We examined a way to incorporate MPCMs with building materials through application for wood-based flooring. Wood-based flooring is commonly used for floor finish materials of residential buildings in Korea. However, wood-based flooring has not performed the characteristic of heat storage. This study is aimed at manufacturing high thermal efficiency wood flooring by increasing its heat storage using MPCM. As a result, this study confirmed that MPCM is dispersed well in adhesive through the scanning electron microscopy analysis. From the differential scanning calorimetry analysis, it can be confirmed that this composite has the characteristic of a thermal energy storage material. Also, we analyzed how this composition was formed by physical combination through the Fourier transform infrared analysis. Also, we confirmed the bonding strength of the material by using the universal testing machine.

  • PDF

Simulation of Refrigeration System with MPCM Slurry as Secondary Fluid (마이크로캡슐 잠열재 슬러리를 적용한 증기압축식 냉동기의 성능 모델링)

  • Choi, Jong-Min;Kim, Yong-Chan;Cheon, Deok-Woo;Kang, Hoon;Yoon, Joon-Sang;Cho, Han-Ho;Kim, Young-Bae;Lee, Ho-Seong;Choi, Kwang-Min;Kang, Yong-Hwa;Jeon, Jong-Ug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.501-508
    • /
    • 2006
  • MPCM (Microencapsulated Phase Change Material) slurries show several advantages over the sensible heat transportation system. In this study, a numerical model for a vapor compression refrigeration system using MPCM slurries as a secondary fluid through an evaporator was developed, and the system performance was compared with that using water. Generally, the MPCM system showed higher performance than the water system. The COP of the MPCM system was higher by 16.6 to 18.6% than that of the water system at all conditions. The MPCM slurry yields better performance in the aspect of heat transfer and heat transportation comparing to the sensible heat transfer medium such as water.

Performance Characteristics of Liquid-Cooling Heat Exchangers with MPCM Slurry Designed for Telecommunication Equipment (MPCM을 적용한 액냉형 냉각기의 성능 특성에 관한 연구)

  • Jeon, Jong-Ug;Kim, Yong-Chan;Choi, Jong-Min;Hyun, Dong-Soo;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.710-717
    • /
    • 2007
  • Electric and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers with MPCM slurries were designed and tested by varying geometry and operating conditions. The liquid-cooling heat exchangers with 4-paths showed higher cooling performance than the others. The cooling performance of liquid cooling heat exchanger with MPCM slurries was more enhanced than that of the air cooling system. It's performance was also slightly superior to that of the water cooling system at the inlet temperature of $19^{\circ}C$.

Experimental Study on the Heat Distribution in the Rectangular Mini Channel Heat Exchangers with MPCM Slurry (마이크로 캡슐 잠열재 슬러리를 적용한 미소채널 열교환기의 열분배 성능평가)

  • Jeon, Jong-Ug;Back, Chang-Huyn;Kim, Yong-Chan;Kim, Young-Deug;Choi, Jong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.645-650
    • /
    • 2006
  • The heat transfer performance and energy transport ability are relatively high due to higher specific heat. Therefore, it can be used in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, liquid-cooling heat exchangers were tested to provide performance data for MPCM slurry. The liquid-cooling heat exchangers had twelve rectangular channels with flow paths of 1, 2, 4 and 12. Silicon rubber heaters were used to control the heat load to the heat exchanger. Heat input ranged from 293 to 800 W, and inlet temperatures of working fluid varied from 15S to $27^{\circ}C$. The standard deviation of surface temperature was strongly affected by the coolant of MPCM Slurry, All MPCM-cooling heat exchangers showed higher cooling performance than the water-cooling heat exchanger except one path channel heat exchanger.

  • PDF

Thermal Performance of the Microencapsulated PCM

  • Lee, Hyo-Jin;Lee, Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.31-39
    • /
    • 2002
  • Microencapsulated pcm (MPCM) particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane ($C_14$$H_30$, $T_m$=5.5$^{\circ}C$) is capsulated in the core, coated with the melamine for their surface. The size of particles is well-controlled under 10$\mu$m in the process of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentractions of slurries are prepared for 20 wt%, 30 wt%, and 40 wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose flow rates are varied by 125 cc/min, 250 cc/min, and 500 cc/min. However, MPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MPCM particles restrict their heat transfer in terms of natural convection and conduction to them.