• Title/Summary/Keyword: MPC(magnetic pulse compression)

Search Result 7, Processing Time 0.029 seconds

Optimization of the Large Scale Magnetic Pulse Compression System of 100 ns-order (100 ns급 대용량 자기펄스 압축시스템의 최적화)

  • 이용우;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.442-445
    • /
    • 2003
  • In this study, we developed the 40 J-class MPC(magnetic pulse compression) system for exciting excimer laser and investigated the optimal conditions of each stage of MPC circuit. This system consists of a DC power supply, a pulse transformer and four saturable inductors. The number of turns of saturable inductors at each stage of MPC circuit are 140, 25, 5, 1 and the optimal storage capacitance of each stage are 34 nF, 28.9 nF, 22.1 nF, respectively. In the improvement MPC system, we have obtained an output voltage of 43 kV, a current of 8.25 kA and a pulse duration of 360 ns. Also, the maximum pulse compression ratio of 77.7 and the current gain of 71.7 were obtained.

  • PDF

Introduction of the Magnetic Pulse Compressor (MPC) - Fundamental Review and Practical Application

  • Choi, Jae-Gu
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.484-492
    • /
    • 2010
  • Magnetic switch is a kind of saturable inductor, which utilizes nonlinearity of the magnetization curve of ferromagnetic materials. The right understanding of the saturation phenomena, magnetic properties, voltage-time product, and switching characteristics of the magnetic switch is essential in designing the magnetic pulse compressor (MPC). In this paper, the historical background of research on the MPC, fundamental physical properties of the magnetic switches, and application fields of the MPC are presented. Further, an in-depth analysis of pulse compression in series and parallel MPCs is incorporated. As practical application examples, a series MPC used for water treatments and a parallel MPC used for pulsed electric field (PEF) inactivation of bacteria are cited.

Development of multi-repetitive Pulse Compression System for excimer laser excitation (엑사이머 레이저 여기용 고반복 펄스압축 시스템 개발에 관한 연구)

  • 전상영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.36-38
    • /
    • 1989
  • We have developed Magnetic Pulse Compression System to realize repetitive excimer laser excitation. The principle of this system is to use the large change in permiability owing to the nolinear characteristics of ferro-magnetic material (Metglas2605s-2 metal ribon). Prior to the laser operation, the MPC system was tested with a dummy load (5$\Omega$) and laser head. Laser head has a discharge volume of 1.0 (w) x 2.0 (h) x 20.0(1) cm. This MPC system compressed a 6.2us (FWHM), 80 A pulse into a 0.4us(FWHM), 1.3kA pulse.

  • PDF

A Pulse Power Supply for Metal Vapor Lasers (금속 증기 레이저용 펄스 전원 장치)

  • Cha Byung Heon;Lee Heung Ho;Jin Jeong Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.190-197
    • /
    • 2005
  • A reliable and compact pulse power supply using a thyratron and a magnetic pulse compression (MPC) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a conventional thyratron-discharge type pulse power supply. A thyratron generated a long pulse of its conduction pulse width 500 ns and then it was compressed to less than 80 ns of its output voltage rise time by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 30 mm inner diameter and 1.5 m discharge length. It was operated several hundreds hours without any troubles.

A Pulse Power Supply for a Metal Vapor Laser Using IGBTs (IGBT를 사용한 금속증기레이저용 펄스 전원)

  • 진정태;차병헌;김철중;이흥호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.415-419
    • /
    • 2004
  • A pulse power supply using IGBTs and MPC (magnetic pulse compression) circuit was developed for a metal vapor laser. The life time of the pulse power supply is expected to be much longer than that of a vacuum tube or thyratron type pulse power supply. A series-connected IGBT array generated a long pulse of its pulse width 2 ${\mu}\textrm{s}$ md then it was compressed to less than 100 ns by a three stage MPC circuit. This pulse power supply was applied to a laser plasma tube of 10 mm inner diameter and 0.5 m discharge length. and successfully operated.

Study on the nano-pulse generator by a semiconductor opening switch (반도체 opening switch를 이용한 nsec 펄스발생기에 관한 연구)

  • Son, Y.G.;Oh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1274-1276
    • /
    • 2000
  • 크로징 스위치인 아바란치 트랜지스터를 사용하여 수 나노$\sim$수십 나노초의 고전압 펄스를 만들 수 있다. 반도체소자의 발전으로 인하여 빠른 회복시간을 갖는 소자가 개발되어 다이오드를 이용한 오프닝 스위치로도 수 나노$\sim$수십 나노초의 고전압 펄스를 얻을 수 있게 되었다. 본 논문에서는 전자총 그리드 펄서를 개발하기 위하여 자기스위치를 사용한 펄스압축기술(MPC : magnetic pulse compression)과 SOS (semiconductor opening switch)다이오드를 이용한 펄스 발생기에 관한 연구를 수행하였고 실험결과로 $50{\Omega}$부하에 대하여 3 kV, 26 nsec 펄스를 얻었다.

  • PDF

Non-thermal Plasma Process for simultaneous removal of SO2/NOx from a Sintering Plant of Steel Works

  • Nam, Chang-Mo;Mok, Young-Sun;Kwon, Gi-Hong;Suh, You-Duck;Cho, Byeung-Rak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • For the simultaneous removal of $SO_2$/NOx from an iron-ore sintering plant, industrial plasma experiments have been conducted with a flue gas flow rate of $5,000Nm^3/hr$. The maximum 40kW power using the magnetic pulse compression (MPC) system generates a peak value of 100-150kV pulse voltage with its risetime of 200nsec and full width at half maximum (FWHM) of 500nsec, and with a frequency <300Hz. The plasma reactor module adopts a wire-plate structure with a gap of 200-400mm ID between plates. Initial concentrations of $SO_2$ and NOx were around 100-150ppm, respectively in the presence of 15% $O_2$ and <10% $H_2O$. Various reaction parameters such as specific energy ($Whr/Nm^3$), $NH_3$ injection with corona discharge, flow rate and injection of hydrocarbons were investigated for $SO_2$/NOx removal characteristics. About 90/65% of $SO_2$/NOx were simultaneously removed with a specific energy of $3.0Whr/Nm^3$ when both $NH_3$ and hydrocarbons were injected. Practical implications that the pilot-scale plasma results provide are further discussed.

  • PDF