• Title/Summary/Keyword: MONSOON

Search Result 494, Processing Time 0.023 seconds

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Water Quality Variation Dynamics between Artificial Reservoir and the Effected Downstream Watershed: the Case Study (인공댐과 그 영향을 받는 하류하천의 수질변동 역동성 : 사례 연구)

  • Han, Jung-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.382-394
    • /
    • 2008
  • The objective of this study was to analyze temporal trends of water chemistry and spatial heterogeneity between the dam site (Daecheong Reservoir, S1) and the downstream (S2$\sim$S4) using water quality dataset (obtained from the Ministry of Environment, Korea) during 2000$\sim$2007. Water quality, based on eight physical and chemical parameters, varied largely depending on the years, sampling sites, and the discharge volume. Conductivity and nutrients (TN and TP) showed a decreasing trend in the downstream (S4) rather than the dam site during the monsoon. Spatial variation increased toward downstream (S4) from Daecheong Reservoir (S1). Also, BOD and COD increased toward downstream. Because of input of nutrient and pollutant nearby S1, lentic ecosystem in monsoon, BOD and COD were slightly increased. whereas relatively decreased in S4, lotic ecosystem in monsoon, by dilution effect of nutrient and pollutant by discharge from upper dam, S1. Spatial variation of SS increased toward downstream (S4) by the side of Daecheong Reservoir (S1). Based on the dataset, efficient water quality management in the point source tributary streams is required for better water quality of downstream. Monthly characteristics of DO showed the lowest value in the monsoon that tend to increase water temperature. DO was lowest in October at S1 because turbid water, input to the Daecheong Reservoir in the monsoon affect to the postmonsoon period. In contrast, water temperature increased toward summer monsoon, in spite of some differences showed between S1 and S4 environment. Overall, the characteristics of water quality in downstream region have close correlation with discharge amount of Daecheong Reservoir. Thus, those characteristics can explain that discharge control of upper dam mainly affect to the water quality variation in downstream reach.

Analysis of Regional Occurrence of Hail over Korean Peninsular (국내의 지역별 우박 발생 빈도 분석)

  • Lee, Young-Kyu;Lee, Jae-Soo;Lee, Sung-Su;Kim, Hak-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.81-84
    • /
    • 2007
  • Data for occurrence of hail over Korean Peninsula for the period 1961-2005 are obtained from the Korea Meteorological Administration (KMA). According to the average occurrences during each season in Korea Peninsular, hail days are almost distributed uniformly in the spring, fall and winter, except the summer and have averages of 5 days for each season. Analysis of regional occurrence of hail shows that inland of Korea Peninsular is vulnerable to hail in the spring and summer and the islands of Ullung, Baegryeong and Cheju and the coastal regions vulnerable in the fall and winter. It can be postulated that these seasonal patterns of hail is affected by the Monsoon effect.

  • PDF

The pattern of precipitation in the summertime on the North Pacific High Pressure System in the Northeastern Asia (동아시아의 북태평양 고기압 연변의 하계 강수 패턴)

  • 윤홍주;류찬수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.334-337
    • /
    • 2003
  • The results of this numerical model is usable to analysis for the phenomena of precipitation during the periods of a rainy season in the Northeastern Asia. Case l(start of rainy season) dominates over precipitation by the processing of convection from the equator region through the East China region, and then the most of water vapor is transported by the processing of advection from the India-monsoon region to this study region. Case 2(heavy rainy season) faints precipitation by the processing of convection in the Korean peninsula, but dominates precipitation by the processing of microphysics. the water vapor originates from the India-monsoon region.

  • PDF

A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(II) (북태평양의 악기상조건과 선박의 안전운항에 관한 연구(II))

  • 민병언
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.2
    • /
    • pp.33-59
    • /
    • 1990
  • In cold season, the developed extratropical cyclones and associated cold fronts, and NW winter monsoon are encountered very frequently in the North Pacific, especially in the northwest part of it. The two sea areas, namely, the northwest part of North Pacific, especially the eastern area far off Japan east coast, and Burmuda Triangle in the North Atlantic are generally known as two of the most dangerous areas in the world because of high incidence of sea casualties. Even large ocean going vessels were sunk frequently due to strong winds and very high seas caused by NW monsoon or developed cyclones during the winter months. The purpose of this paper is to analyse the real state of heavy weather and high sea phenomena on the vesscls at sea, thus helping mariners operate in such conditions.

  • PDF

A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(I) (북태평양의 악기상조건과 선박의 안전운항에 관한 연구(I))

  • 민병언
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.107-144
    • /
    • 1987
  • In cold season, ice accretion on ship, drift ice, NW winter monsoon, developed extratropical cyclones and associated cold fronts, in warm season, tropical cyclones and dense sea fogs, are encountered very frequently in the North Pacific, especially in the northwest part of it. The two areas, namely, the northwest part of the North Pacific and Burmuda Triangle in the North Atlantic are generally known as most dangerous areas in the world because its high incidence of sea cascualities. In recent years, the small fisherboats operating in the northern seas were frequently sunk in a group as they encountered ice accretion or drift ice. And ocean going vessels were also sunk frequently due to strong winds and very high seas in winter monsoon or developed cyclones and cold fronts. The purpose of this paper is to analyze the real state of heavy weather conditions such as ice accretion on ship drift, ice, typhoons and sea fogs, and also to analyse the effect of these heavy weather phenomena on the vessels at sea, thus helping mariners operate in such heavy weather conditions.

  • PDF