• Title/Summary/Keyword: MONITORING TECHNIQUE

Search Result 2,192, Processing Time 0.036 seconds

Disruption of Chemical Communication of Synanthedon tenuis (Lepidoptera: Sesiidae) by Sex Pheromone Dispensers in Sweet Persimmon Orchards (단감원에서 성페로몬 방출기에 의한 애기유리나방의 화학통신 교란 효과)

  • Chiluwal, Kashinath;Kim, Junheon;Park, Chung Gyoo;Roh, Gwang Hyun
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.333-339
    • /
    • 2020
  • Pheromone-based techniques are becoming a viable strategy of insect pest management as facilitated by the exponential increase in numbers of pheromone identifications from many insect pests. This is the report on the efficacy of pheromone-mediated chemical communication disruption (PCD) technique against the Korean population of smaller clearwing moths, Synanthedon tenuis (Butler) (Lepidoptera: Sesiidae) using its female sex pheromone component, (Z, Z)-3, 13-octadecadien-1-ol. The PCD trials were carried out four times during 2016 and 2017 in persimmon orchards located at Suncheon and Jinju Cities in Korea, and the PCD efficacy was expressed as the mean differences in the seasonal catches of S. tenuis males in the PCD and control plots. The seasonal male moth catches in monitoring traps installed in the PCD plots were significantly lower as compared with those installed in the control plots. Consequently, the PCD efficacy in the experimental orchards ranged from 95.2-100% with an average efficacy of 98.8 ± 1.2%, revealing a future possibility of pheromone-based management of S. tenuis.

A Study on Biomass Estimation Technique of Invertebrate Grazers Using Multi-object Tracking Model Based on Deep Learning (딥러닝 기반 다중 객체 추적 모델을 활용한 조식성 무척추동물 현존량 추정 기법 연구)

  • Bak, Suho;Kim, Heung-Min;Lee, Heeone;Han, Jeong-Ik;Kim, Tak-Young;Lim, Jae-Young;Jang, Seon Woong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • In this study, we propose a method to estimate the biomass of invertebrate grazers from the videos with underwater drones by using a multi-object tracking model based on deep learning. In order to detect invertebrate grazers by classes, we used YOLOv5 (You Only Look Once version 5). For biomass estimation we used DeepSORT (Deep Simple Online and real-time tracking). The performance of each model was evaluated on a workstation with a GPU accelerator. YOLOv5 averaged 0.9 or more mean Average Precision (mAP), and we confirmed it shows about 59 fps at 4 k resolution when using YOLOv5s model and DeepSORT algorithm. Applying the proposed method in the field, there was a tendency to be overestimated by about 28%, but it was confirmed that the level of error was low compared to the biomass estimation using object detection model only. A follow-up study is needed to improve the accuracy for the cases where frame images go out of focus continuously or underwater drones turn rapidly. However,should these issues be improved, it can be utilized in the production of decision support data in the field of invertebrate grazers control and monitoring in the future.

Delphi Survey for COVID-19 Vaccination in Korean Children Between 5 and 11 Years Old (국내 5-11세 소아의 코로나19 백신 접종에 대한 델파이 연구)

  • Choe, Young June;Lee, Young Hwa;Choi, Jae Hong
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Purpose: During the coronavirus disease 2019 (COVID-19) pandemic, we conducted a Delphi survey that included the experts from the field of COVID-19 immunization in children aged 5-11 years. The aim was to organize collective expert opinions on COVID-19 vaccination in young children in the Republic of Korea, and so thus assist the vaccination policy. Methods: The panels included pediatric infectious disease specialists, preventive medicine experts, infectious disease physicians, and COVID-19 vaccine experts consulting the Ministry of Health and Welfare. The Delphi survey was conducted online using a questionnaire from February 14 to February 27, 2022. Results: The Delphi panels agreed that children were vulnerable to COVID-19, and the severity of illness was modest. Furthermore the panels reported that children with chronic illness were more susceptible to a worsening clinical course. There were generally positive opinions on the effectiveness of COVID-19 vaccination in children aged 5-11 years, and experts gathered a slightly positive opinion that the adverse events of pediatric COVID-19 were not numerous. The benefits of COVID-19 vaccination were evaluated at a level similar to the potential risks in children. Currently, the only approved mRNA platform vaccine in children seemed to be sustainable; however, the recombinant protein platform COVID-19 vaccines were evaluated as better options. Conclusions: Due to the surge of the Omicron variant and an increase in pediatric cases, the COVID-19 vaccination in young children may have to be considered. Panels had neutral opinions regarding the COVID-19 vaccination in children aged 5-11 years. Thus monitoring of the epidemiology and the data about the safety of COVID-19 vaccination should be continued.

Deep Learning-based Forest Fire Classification Evaluation for Application of CAS500-4 (농림위성 활용을 위한 산불 피해지 분류 딥러닝 알고리즘 평가)

  • Cha, Sungeun;Won, Myoungsoo;Jang, Keunchang;Kim, Kyoungmin;Kim, Wonkook;Baek, Seungil;Lim, Joongbin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1273-1283
    • /
    • 2022
  • Recently, forest fires have frequently occurred due to climate change, leading to human and property damage every year. The forest fire monitoring technique using remote sensing can obtain quick and large-scale information of fire-damaged areas. In this study, the Gangneung and Donghae forest fires that occurred in March 2022 were analyzed using the spectral band of Sentinel-2, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI) to classify the affected areas of forest fires. The U-net based convolutional neural networks (CNNs) model was simulated for the fire-damaged areas. The accuracy of forest fire classification in Donghae and Gangneung classification was high at 97.3% (f1=0.486, IoU=0.946). The same model used in Donghae and Gangneung was applied to Uljin and Samcheok areas to get rid of the possibility of overfitting often happen in machine learning. As a result, the portion of overlap with the forest fire damage area reported by the National Institute of Forest Science (NIFoS) was 74.4%, confirming a high level of accuracy even considering the uncertainty of the model. This study suggests that it is possible to quantitatively evaluate the classification of forest fire-damaged area using a spectral band and indices similar to that of the Compact Advanced Satellite 500 (CAS500-4) in the Sentinel-2.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

ECG Compression and Transmission based on Template Matching (템플릿 매칭 기반의 심전도 압축 전송)

  • Lee, Sang-jin;Kim, Sang-kon;Kim, Tae-kon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • An electrocardiogram(ECG) is a recoding of electrical signals of the heart's cyclic activity and an important body information for diagnosing myocardial rhythm. Large amount of information are generated continuously and a significant period of cumulative signal is required for the purpose of diagnosing a specific disease. Therefore, research on compression including clinically acceptable lossy technique has been developed to reduce the amount of information significantly. Recently, wearable smart heart monitoring devices that can transmit electrocardiogram(ECG) are being developed. The use of electrocardiogram, an important personal information for healthcare service, is rapidly increasing. However, devices generally have limited capability and power consumption for user convenience, and it is often difficult to apply the existing compression method directly. It is essential to develop techniques that can process and transmit a large volume of signals in limited resources. A method for compressing and transmitting the ECG signals efficiently by using the cumulative average (template) of the unit waveform is proposed in the paper. The ECG is coded lovelessly using template matching. It is analyzed that the proposed method is superior to the existing compression methods at high compression ratio, and its complexity is not relatively high. And it is also possible to apply compression methods to template matching values.

Monitoring the Restoration of Evergreen Broad-Leaved Forests in the Warm-Temperate Region(III) (난온대 기후대의 상록활엽수림 복원 모니터링(III))

  • Kang, Hyun-Mi;Kang, Ji-Woo;Kim, Ji-Hae;Sung, Chan-Yong;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.1
    • /
    • pp.87-101
    • /
    • 2022
  • This study analyzed changes in the vegetation structure of 16 permanent plots (experimental and control) installed in Wando Arboretum in 1996 to monitor the long-term change process of evergreen broad-leaved forests in warm temperate. Especially, this study discusses the effects of trial treatment (selection cutting and plant introduction), introduced as a restoration technique in 1996, on vegetation development. In communities dominated by Quercus acuta in the canopy (permanent plots 1 through 3), this species's mean important percentage (MIP) decreased, and the evergreen broad-leaved species was introduced from outside increased, likely to change the vegetation structure in the future. The expansion of the evergreen broad-leaved species group was also confirmed in Q. acuta-deciduous broad-leaved forests (permanent plots 5 and 7) and Pinus densifloraforests (permanent plots 9 and 10). In the experimental plots where thinning was carried out, the zoochory (the dispersal of seeds by birds), Cinnamomum yabunikkei, Neolitsea sericea, Machilus thunbergii, etc., and the expansion of the influence of evergreen broad-leaved species were remarkable, so it is considered to have effectively promoted the vegetation development in warm temperate forests. Although evergreen broad-leaved species were planted in the experimental plot to change vegetation structure, it seems the effect on the change was weak due to the small amount of planting. Compared to other vegetation types, the change in the vegetative structure of the pine forest to an evergreen broad-leaved forest was clear due to the decline of P. densiflora and P. thunbergii.

Quantitative Evaluation of Leak Index from Electrical Resistivity and Induced Polarization Surveys in Embankment Dams (전기비저항 및 유도분극 탐사에 의한 저수지 누수지수 산출)

  • Cho, In Ky;Kim, Yeon Jung;Song, Sung Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.120-128
    • /
    • 2022
  • There are 17,000 reservoir dams in Korea, of which more than 85% were built over 50 years ago. Old embankment dams are weakened by internal erosion and suffusion phenomena due to preferential leakage paths and this ongoing weakening can cause their failure. Therefore, early warning associated with leakage in an embankment dam is crucial to prevent its failure. An electrical resistivity survey is a non-destructive, real-time and in-situ technique for detecting the development of leakage zones and general conditions of embankment dams. Because of its advantages, the electrical resistivity survey is widely used for reservoir safety inspections. However, the electrical resistivity survey is still not officially included in the precise safety inspection of reservoir dams because it cannot present a quantitative index of dam safety. In this study, we propose a method for calculating the leak index according to the water content evaluated from the electrical resistivity survey and/or induced polarization survey. Particularly, by proposing a quantitative leak index calculation method from monitoring surveys and independent surveys, we provide a theoretical basis for including electrical resistivity and induced polarization surveys as components of the precise safety inspection of reservoirs dams.