• Title/Summary/Keyword: MOLECULAR WEIGHT

Search Result 5,158, Processing Time 0.032 seconds

Metabolic Adjustments of Lactate Dehydrogenase Isozymes to the Environmental Temperature in Bluegill (Lepomis macrochirus) (환경온도에 대한 파랑볼우럭(Lepomis macrochirus) 젖산탈수소효소 동위효소들의 대사조절)

  • Ku, Bora;Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1105-1112
    • /
    • 2016
  • The aim of this study was to examine the metabolic adjustment of lactate dehydrogenase (EC 1.1.1.27, LDH) isozymes to the environmental temperature in bluegill (Lepomis macrochirus). This study included three groups of bluegill collected in April (group Ⅰ), May (group Ⅱ), and September (group Ⅲ). The LDH activities of skeletal muscle, heart, and brain tissues were higher in group Ⅲ than in groups Ⅰ and Ⅱ. The citrate synthase (EC 4.1.3.7, CS) activity was higher in skeletal muscle but lower in heart and brain tissues of group Ⅱ as compared to group Ⅰ. In contrast, the CS activity was lower in skeletal muscle and higher in heart and brain tissues in group Ⅲ than in group Ⅱ. Furthermore, the LDH/CS activity ratio was higher in the skeletal muscle and brain in group Ⅲ than in groups Ⅰ and Ⅱ. Accordingly, anaerobic metabolism was increased in group Ⅲ. LDH A4, A2B2, and B4 isozymes were expressed in skeletal muscle, heart, liver, and brain tissues. The LDH C hybrid was detected in brain tissue. The LDH A4 isozyme was successfully purified by affinity chromatography. The molecular weight of the purified LDH A4 isozyme was 136 kDa and its optimal pH for enzymatic activity was 8.0. The KmPYR values of LDH in skeletal muscle were 0.161-0.227 mM using pyruvate as a substrate. These kinetic properties of LDH in skeletal muscle are consistent with the fact that bluegill is a cold-adapted species. These results may be useful for predicting the habitat use of this fish.

The Effect of Translationally Controlled Tumor Protein (TCTP) of the Arctic Copepod Calanus glacialis on Protecting Escherichia coli Cells against Oxidative Stress (북극 동물플랑크톤 Calanus glacialis TCTP (Translationally Controlled Tumor Protein)가 산화적 스트레스 상태에서 E. coli 세포의 저항성에 미치는 효과)

  • Park, Yu Kyung;Lee, Chang-Eun;Lee, Hyoungseok;Koh, Hye Yeon;Kim, Sojin;Lee, Sung Gu;Kim, Jung Eun;Yim, Joung Han;Hong, Ju-Mi;Kim, Ryeo-Ok;Han, Se Jong;Kim, Il-Chan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.931-938
    • /
    • 2020
  • Translationally controlled tumor protein (TCTP) is one of the most abundant proteins in various eukaryotic organisms. TCTPs play important roles in cell physiological processes in cancer, cell proliferation, gene regulation, and heat shock response. TCTP is also considered an important factor in the resistance to oxidative stress induced by dithiothreitol or hydrogen peroxide (H2O2). Arctic calanoid copepods have a variety of antioxidant defense systems to regulate the levels of potentially harmful reactive oxygen species generated by ultraviolet radiation in the Arctic marine ecosystem. However, information on the antioxidant activity of TCTP in the Arctic Calanus glacialis is still scarce. To understand the putative antioxidant function of the Arctic copepod C. glacialis TCTP (Cg-TCTP), its gene was cloned and sequenced. The Cg-TCTP comprised 522 bp and encoded a 174-amino acid putative protein with a calculated molecular weight of ~23 kDa. The recombinant Cg-TCTP (Cg-r TCTP) gene was overexpressed in Escherichia coli (BL21), and Cg-rTCTP-transformed cells were grown in the presence or absence of H2O2. Cg-rTCTP-transformed E. coli showed increased tolerance to high H2O2 concentrations. Therefore, TCTP may be an important antioxidant protein related to tolerance of the Arctic copepod C. glacialis to oxidative stress in the harsh environment of the Arctic Ocean.

Identification and Characterization of Lactobacillus salivarius subsp. salivarius from Korean Feces

  • Bae, Hyoung-Churl
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.89-119
    • /
    • 2004
  • This study was conducted to isolate lactobacilli having probiotic characteristics to be used as health adjuncts with fermented milk products. Acid tolerant strains were selected in Lactobacilli MRS broth adjusted to pH 4.0 from 80 healthy persons (infants, children and adults). And bile tolerant strains were examined in Lactobacilli MRS broth in which 1.0% bile salt was added. By estimation above characteristics, the strains No. 27, which was isolated from adult feces, was selected and identified as Lactobacillus salivarius subsp. salivarius based on carbohydrate fermentation and 16S rDNA sequencing. It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at $37^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by $0.9{\sim}1.0%$ at $37^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced $23{\sim}38%$ of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 hours at $37^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with $15{\sim}25$ mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. Purified ${\alpha}$-galactosidase was obtained by DEAE-Sephadex A-50 ion exchange chromatography, Mono-Q ion exchange chromatography and HPLC column chromatography from L. salivarius subsp. salivarius 27. The specific activity of the purified enzyme was 8,994 units/mg protein, representing an 17.09 folds purification of the original cell crude extract. The molecular weight of enzyme was identified about 53,000 dalton by 12% SDS-PAGE. Optimal temperature and pH for activity of this enzyme were $40^{\circ}C$ and 7.0 respectively. The enzyme was found to be stable between 25 and $50^{\circ}C$. ${\alpha}$-galactosidase activity was lost rapidly below pH 5.0 and above pH 9.0. This enzyme was liberated galactose from melibiose, raffinose, and stachyose, and also the hydrolysis rate of substrate was compound by HPLC. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.

  • PDF

Uptake of Heavy Metal Ions by Water Dropwort (Oenanthe stolonifera DC.) and Identification of Its Heavy Metal-Binding Protein (미나리의 중금속 흡수량 측정 및 중금속 결합단백질의 동정)

  • Park, Young-Il;Kim, Hee-Guen;Kim, Yoo-Young;Kim, In-Soo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.494-500
    • /
    • 1996
  • Uptake of hen metal ions by water dropwort (Oenanthe stolonifera DC.) and its cadmium-binding protein were studied to probe for good method to remove heavy metal contaminants from environments. The plant was cultured in the culture medium (pH 7.0) containing the various concentrations of $Cd^{2+}$, $Cr^{3+}$ or $Pb^{2+}$, for 3 and 7 days. The residual heavy metals deposited in roots linearly increased as the metal ions concentration increased up to 17 ppm for $Cd^{2+}$, 20 ppm for $Cr^{3+}$ and 50 ppm for $Pb^{2+}$. Above these concentrations, the plant growth was inhibited and the uptake rates of the metal ions decreased. The heavy metals absorbed by the plant were mostly deposited in roots. In particular, the residual concentration of lead in roots was about four times higher than those of cadmium and chromium. When cultured in the medium containing 20 ppm of each metal ion, 80% of cadmium, 90% of cromium and 96% of lead were deposited in roots out of the total residual metal ions in the plant. These values correspond to 6.1 mg of cadmium, 5.2 mg of chromium and 23.6 mg of lead per one gram of roots tissue on a dry weight basis. A cadmium-binding protein was partially purified by extraction, gel filtration and DEAE-Cellulose chromatography from water dropworts that was grown in the medium containing 20 ppm $Cd^{2+}$. The purified protein was a single band on SDS- and non-denaturing- polyacrylamide gel electrophoresis. Its molecular mass was estimated to be ca. 5,000 dalton by gel filteration. Analysis of amino acid composition of the protein indicated that it had a typical amino acid composition of heavy metal-binding protein in that it contained 27% of acidic amino acids and 9.9% of cysteine. However, it is likely that the protein is a new plant metal-binding protein, since its amino acid composition is somewhat different from those of phytochelatins that have been known so far.

  • PDF

Cloning of the Cellulase Gene and Characterization of the Enzyme from a Plant Growth Promoting Rhizobacterium, Bacillus licheniformis K11 (고추역병 방제능이 있는 식물성장촉진 균주 Bacillus licheniformis K11의 cellulase 유전자의 cloning 및 효소 특성 조사)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2007
  • The cellulase gene of Bacillus licheniformis K11 which has plant growth-promoting activity by auxin and antagonistic ability by siderophore was cloned in pUC18 using PCR employing heterologous primers. The 1.6kb PCR fragment contained the full sequence of the cellulase gene, denoted celW which has been reported to encode a 499 amino acid protein. Similarity search in protein data base revealed that the cellulase from B. licheniformis K11 was more than 97% identical in amino acid sequence to those of various Bacillus spp. The cellulase protein from B. licheniformis K11, overproduced in E. coli DH5${\alpha}$ by the lac promoter on the vector, had apparent molecular weight of 55 kDa upon CMC-SDS-PAGE analysis. The protein not only had enzymatic activity toward carboxymethyl-cellulose (CMC), but also was able to degrade insoluble cellulose, such as Avicel and filter paper (Whatman$^{\circledR}$ No. 1). In addition, the cellulase could degrade a fungal cell wall of Phytophthora capsici. Consequently B. licheniformis K11 was able to suppress the peperblight causing P. capsici by its cellulase. Biochemical analysis showed that the enzyme had a maximum activity at 60$^{\circ}C$ and pH 6.0. Also, the enzyme activity was activated by Co$^{2+}$ of Mn$^{2+}$ but inhibited by Fe$^{3+}$ or Hg$^{2+}$. Moreover, enzyme activity was not inhibited by SDS or sodium azide.

Improvement in Antagonistic Ablility of Antagonistic Bacterium Bacillus sp. SH14 by Transfer of the Urease Gene. (Urease gene의 전이에 의한 길항세균 Bacillus sp. SH14의 길항능력 증가)

  • 최종규;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.122-129
    • /
    • 1998
  • It were reported that antifungal mechanism of Enterobacter cloacae is a volatile ammonia that produced by the strain in soil, and the production of ammonia is related to the bacterial urease activity. A powerful bacterium SH14 against soil-borne pathogen Fusarium solani, which cause root rot of many important crops, was selected from a ginseng pathogen suppressive soil. The strain SH14 was identified as Bacillus subtilis by cultural, biochemical, morphological method, and $API^{circledR}$ test. From several in vitro tests, the antifungal substance that is produced from B. subtilis SH14 was revealed as heat-stable and low-molecular weight antibiotic substance. In order to construct the multifunctional biocontrol agent, the urease gene of Bacillus pasteurii which can produce pathogenes-suppressive ammonia transferred into antifungal bacterium. First, a partial BamH I digestion fragment of plasmid pBU11 containing the alkalophilic B. pasteurii l1859 urease gene was inserted into the BamH I site of pEB203 and expressed in Escherichia coli JM109. The recombinant plasmid was designated as pGU366. The plasmid pGU366 containing urease gene was introduced into the B. subtilis SH14 with PEG-induced protoplast transformation (PIP) method. The urease gene was very stably expressed in the transformant of B. subtilis SH14. Also, the optimal conditions for transformation were established and the highest transformation frequency was obtained by treatment of lysozyme for 90 min, and then addition of 1.5 ${mu}g$/ml DNA and 40% PEG4000. From the in vitro antifungal test against F. solani, antifungal activity of B. subtilis SH14(pGu366) containing urease gene was much higher than that of the host strain. Genetical development of B. subtilis SH14 by transfer of urease gene can be responsible for enhanced biocontrol efficacy with its antibiotic action.

  • PDF

Production of Violacein by a Novel Bacterium, Massilia sp. EP15224 Strain (Violacein을 생산하는 Massilia sp. EP15224 균주)

  • Yoon, Sang-Hong;Baek, Hee-Jin;Kwon, Soon-Wu;Lee, Chang-Muk;Sim, Joon-Soo;Hahn, Bum-Soo;Koo, Bon-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • Violacein has received much attention due to its various important biological activities, including broad-spectrum antibacterial and antifungal activity, anti-malarial, anti-tumoral, anti-oxidant, and anti-diarrheal activities. EP15224 strain isolated from forest soils in Korea was found to be a new species belonged to the genus Massilia based on its 16S ribosomal DNA sequences. The 16S ribosomal DNA of strain EP15224 displayed 97% homology with Massilia sp. BS-1, the nearest violacein-producing bacterium. Strain EP15224 produced bluish-purple pigment well in a synthetic MM2 medium containing glucose, $(NH_4)_2SO_4$, $Na_2HPO_4{\cdot}7H_2O$, $KH_2PO_4$, $MgSO_4{\cdot}7H_2O$, and 1 mM $\small{L}$-tryptophan. The chemical analysis of the pigment by LC/MS/MS showed that it is violacein with molecular weight of 343.34. This is the second report on the production of violacein by a Massilia species. In this study, the optimal culture conditions for violacein production were established under which 280 mg/l crude violacein was produced : glucose 2 g/l, $(NH_4)_2SO_4$ 1 g/l, $Na_2HPO_4{\cdot}7H_2O$ 2 g/l, $KH_2PO_4$ 1 g/l, $MgSO_4{\cdot}7H_2O$ 0.1 g/l, L-tryptophan 0.24 g/l, 25 ml medium in a 250 ml flask, with an inoculumn size of 10% (v/v), 72 h of cultivation with 250 rpm at $25^{\circ}C$.

Biochemical Characterization of a Novel Thermostable Esterase from the Metagenome of Dokdo Islets Marine Sediment (독도 심해토 메타게놈 유래 신규 내열성 에스테라아제의 생화학적 특성규명)

  • Lee, Chang-Muk;Seo, Sohyeon;Kim, Su-Yeon;Song, Jaeeun;Sim, Joon-Soo;Hahn, Bum-Soo;Kim, Dong-Hern;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • A functional screen of 60,672 fosmid metagenomic clones amplified from marine sediment obtained from the Dokdo islets in Korea identified the gene EstES1, whose product, EstES1, displayed lipolytic properties on tributyrin-supplemented media. EstES1 is a 576 amino acid protein with a predicted molecular weight of 59.4 kDa including 37 N-terminal leader amino acids. EstES1 exhibited the highest sequence similarity (44%) to a carboxylesterase found in Haliangium ochraceum DSM14365. Phylogenetic analysis indicated that EstES1 belongs to a currently uncharacterized family of lipases. Within the conserved domain, EstES1 retains the catalytic triad that consists of the consensus penta-peptide motif, GESAG. EstES1 demonstrated a broad substrate specificity toward the long acyl group of ethyl esters (C2-C12), and its optimal activity was recorded toward p-Nitrophenyl butyrate (C4) at pH 9.0 and $40^{\circ}C$ (specific activity of 255.4 U/mg). The enzyme remained stable in the ranges of $60-65^{\circ}C$ and pH 9.0-10.5 and in the presence of methanol, ethanol, isopropanol, and dimethyl sulfoxide. Therefore, EstES1 has potential for use in industrial applications involving high temperature, organic solvents, and/or alkaline conditions.

Processing Conditions of the Fermented and Dried Sauces Using Fish Hydrolysates (어류 가수분해물을 이용한 건조젓갈의 제조조건)

  • BAE Tae-Jin;CHOI Ok-Soo;KANG Hoon-I
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.170-174
    • /
    • 1999
  • Proessing conditions for fermented and dried sauces with the underutilized fishes were investigated. Hair tail, gizzard shad, and kangdale were hydrolyzed at $60^{\circ}C$ for 6 hours using $4\%$ Alcalase, and their hydrolysates were separted by molecularporous membrane. The hydrolytic ratios of hair tail, gizzard shad, and kangdale were estimated to be $84.2\%$, $83.6\%$ and $85.1\%$, respectively. Amino nitrogen recoveries were determind to be $73.1\~73.9\%$ by a membrane with molecular weight cutoff 100 dalton and $91.7\~92.5\%$ by a membrane with 500 dalton. Ultrafiltration was very efficient means for removing bitter taste. With the additions of $2\%$ glucose, $4\%$ lactose and $4\%$ skim milk, product yields of hair tail, gizzard shad, and kangdale were determind to be $16.4\%,\;17.2\%$ and $17.0\%$, respectively. Water adsorption rates of hair tail and kangdale showed $5.0\~9.2\%$ and $5.5\~9.6\%$, respectively, under Aw 0.52$\~$0.94. Contents of total nitrogen in the fermented and dried sauces prepared with hair tail, gizzard shad and kangdale were $3.9\%,\;4.1\%$ and $3.7\%$, respectively, and those of amino nitrogen were $3.2\%,\;3.4\%$ and $3.1\%$, respectively. In the fermented and dried sauces prapared with hair tail, gizzard shad and kangdale, the hygroscopities at Aw 0.88 were $6.9\%,\;7.5\%$ and $6.8\%$, respectively, and solubilities under dissolved in water for 30 minutes were $84.6\%,\;83.6\%$ and $93.8\%$, respectively.

  • PDF

The Proteinase Distributed in the Intestinal Organs of Fish 2. Characterization of the Three Alkaline Proteinases from the Pyloric Caeca of Mackerel, Scomber japonicus (어류의 장기조직에 분포하는 단백질분해효소에 관한 연구 2. 고등어 유문수조직중에 분포하는 3종 알칼리성 단백질분해효소의 특성)

  • KIM Hyeung-Rak;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.6
    • /
    • pp.547-557
    • /
    • 1986
  • The characteristics of the three alkaline proteinases, Enz. A, B and C, from the pyloric caeca of mackerel have been investigated. The optimum condition for the activity of the Enz. A, B and C was pH 9.4, 9.8 and 9.8 at $45^{\circ}C$ for $2\%$ casein solution, and was pH 9.2 10.2 and 9.8 at $45^{\circ}C$ for $5\%$ hemoglobin denatured by urea, respectively. Enz. A, B and C by heat treatment at $50^{\circ}C$ for 5 min were inactivated 90, 33 and $37\%$, respectively, over the original activity. The reaction rate of the three alkaline proteinases was constant to the reaction time to 40 min in the reaction condition of $2{\mu}g/ml$ of enzyme concentration and $2\%$ casein solution. The reaction rate equation and Km value against casein substrate determined by the method of Lineweaver and Burk were: Enz. A, Y=3.6X and $Km=5.0{\times}10^{-3}\%$; Enz. B, Y=6.0X and $Km=1.0{\times}10^{-3}\%$; Enz. C, Y=4.2X and $Km=3.6{\times}10^{-3}\%$. The three alkaline proteinases were inactivated by $Ag^+$ and $Hg^{2+}$, but activated by $Mn^{2+},\;Sn^{2+}\;and\;Pb^{2+}$, Enz. B and C were remarkably inhibited by the soybean trypsin inhibitor. Molecular weight of Enz. A, B and C determined by SDS-polyacrylamide gel electrophoresis and Sephadex G-100 gel filtration was in the range of $27,500{\pm}2,500,\;20,500{\pm}1,500\;and\;15,250{\pm}250$, respectively.

  • PDF