• Title/Summary/Keyword: MODIS chlorophyll information

Search Result 12, Processing Time 0.019 seconds

Analysis of Ocean Color Data for Observation on the Ocean Environment Change Caused by Typhoon Path (태풍의 이동경로에 따른 해양환경변화관측을 위한 해색 자료 분석)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • When the typhoons are passing over the ocean, the ocean environment has both physical and biological impacts on the East, South sea and Yellow sea of Korea. As a result of typhoon path, vertical mixing and upwelling injured colder subsurface water, and leaded to phytoplankton blooming along the typhoons. The ocean environment before and after a typhoon played an important role in the biological effect of sea surface. Although the magnitude of sea surface temperature (SST) gets cooler because of typhoon path, other physical and biophysical responses are quite different such as chlorophyll, K490 and SST. The purpose of this study is to compare with the typhoon path that influenced the Korean Peninsula and ocean environment parameters which were observed by ocean color remotely-sensed data. The MODIS data were used to assess the parameters of ocean environments such as K490 and chlorophyll data from 2002 to 2005. Mean chlorophyll from MODIS data increased by about 1-4% in the East sea after the typhoon. Mean concentration of MODIS chlorophyll in the post-typhoon period increased along the typhoon passage. However, Jeju coastal area has different patterns from those of the East sea.

A Study on Red Tide Detection Algorithm Based on Two Stage filtering - Application to MODIS Chlorophyll Information - (2단계 필터링 기반 적조 탐지 알고리즘에 관한 연구 - MODIS 클로로필 정보에 적용 -)

  • Kim, Yong-Min;Kim, Hyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.4
    • /
    • pp.325-331
    • /
    • 2008
  • We propose an algorithm to detect large Cochlodinium polykrikoides red tide event that was appeared in Korean coastal waters. This algorithm is based on two-stage filtering using MODIS chlorophyll information. Most of the red tide detection studies generally use assumption that sea water having high chlorophyll concentration is red tide events because of high correlation and red tide. However, these methods generate many commission errors such as turbid water by detecting inactive sea water of red tide. Therefore, we eliminated commission errors by applying two stage filtering and verified the algorithm's effectiveness by detecting large Cochlodinium polykrikoides red tide event that was appeared in Korean coastal waters.

SEASONAL DISTRIBUTION OF CHLOROPHYLL-A CONCENTRATION DEDUCED FROM MODIS OCEAN COLOR DATA IN THE EDDY AREA HYUGA-NADA EAST KYUSHU SEAWATER

  • Winarso, Gathot;Hiroyuki, Kikukawa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.475-478
    • /
    • 2006
  • Total primary production resulting from the photosynthetic process can be defined as the amount of organic matter produced in a given period of time. It is proportional to the chlorophyll-a (chl-a) values in the surface layer of the ocean. The MODIS board on Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of chl-a concentration and sea surface temperature (SST) in the upper layer of the sea. The seasonal distribution of chl-a concentration during one year from April 2005 to March 2006 was examined. Light has a role of starting the seasonal cycle. The Kuroshio Current in this area induces many oceanographical features affecting to the change of seasonal control. The chl-a concentration is also seasonal, which is low in summer and high in winter. In summer, the meandering of Kuroshio Current induces strong eddies and increases the chl-a concentration. In autumn, the delayed small autumn bloom occurred until last December due to the Kuroshio Current. When the Kuroshio axis moves far from the coast, the coastal water dominates and increases the concentration even in the winter. The spring bloom starts early at the beginning of March and decreases during the spring.

  • PDF

A Comparative Study for Red Tide Detection Methods Using GOCI and MODIS

  • Oh, Seung-Yeol;Jang, Seon-Woong;Park, Won-Gyu;Lee, Jun-Ho;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.331-335
    • /
    • 2013
  • This study detected red tide areas using the existing Moderate-Resolution Imaging Spectroradiometer(MODIS) and Geostationary Ocean Color Imager(GOCI), and then compared the results between results of two sensors. The coasts of Jeollanam-do in the South Sea of Korea were set as the study area based on the red tide data which occurred on Aug. 26th, 2012. This study compared the results of sensors to detect red tides by using a satellite. In the results of analyzing MODIS by limiting it as chlorophyll concentration and the sea surface temperature which is considered to have red tides by the existing researches, it was possible to delete considerable amount of errors compared to the case of detecting red tides by using only chlorophyll while still there were differences from the range of red tides actually observed. In the results of GOCI by using empirical algorithm for detecting red tides, currently used by Korea Institute of Ocean Science & Technology(KIOST), it was possible to obtain more detailed results than MODIS. However, there was an area misjudged as red tides due to the influence of clouds. Also both MODIS and GOCI extracted red tides were not actually occurring, which might be because they were not able to perfectly distinguish red tides from turbid water in coastal areas with high turbidity.

A Study on Extending Successive Observation Coverage of MODIS Ocean Color Product (MODIS 해색 자료의 유효관측영역 확장에 대한 연구)

  • Park, Jeong-Won;Kim, Hyun-Cheol;Park, Kyungseok;Lee, Sangwhan
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • In the processing of ocean color remote sensing data, spatio-temporal binning is crucial for securing effective observation area. The validity determination for given source data refers to the information in Level-2 flag. For minimizing the stray light contamination, NASA OBPG's standard algorithm suggests the use of large filtering window but it results in the loss of effective observation area. This study is aimed for quality improvement of ocean color remote sensing data by recovering/extending the portion of effective observation area. We analyzed the difference between MODIS/Aqua standard and modified product in terms of chlorophyll-a concentration, spatial and temporal coverage. The recovery fractions in Level-2 swath product, Level-3 daily composite product, 8-day composite product, and monthly composite product were $13.2({\pm}5.2)%$, $30.8({\pm}16.3)%$, $15.8({\pm}9.2)%$, and $6.0({\pm}5.6)%$, respectively. The mean difference between chlorophyll-a concentrations of two products was only 0.012%, which is smaller than the nominal precision of the geophysical parameter estimation. Increase in areal coverage also results in the increase in temporal density of multi-temporal dataset, and this processing gain was most effective in 8-day composite data. The proposed method can contribute for the quality enhancement of ocean color remote sensing data by improving not only the data productivity but also statistical stability from increased number of samples.

Spatial Variability of in situ and GOCI and MODIS Chlorophyll and CDOM in Summer at the East Sea (여름철 동해의 현장측정치와 GOCI와 MODIS 위성 자료로 측정한 엽록소와 유색용존유기물의 공간 변동성)

  • Park, Mi-Ok;Shin, Woo-Chul;Son, Young-Baek;Noh, Tae-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.327-338
    • /
    • 2015
  • Because of impact on the underwater light field, CDOM can influence the accuracy of global satellite-based measurement of ocean chlorophyll and primary productivity. So we investigated the distribution and seasonal variation of CDOM in the East Sea during summer 2009 and 2011. Among them we report two distinctively different summer cases between 2009 and 2011 year, in which showed the different main sources for CDOM. Regulating factors and sources of CDOM in the East Sea were examined. Comparison between in situ and satellite derived Chl a and CDOM were made to find an influence of CDOM on measurement of satellite derived Chl a. Similar pattern and matching of MODIS Chl a with in situ Chl a 2009 was comparable, but significant discrepancy between MODIS Chl a and in situ Chl a was found, when CDOM was high in summer of 2011. GOCI data showed better matching with in situ data for both Chl a and CDOM, compared to MODIS data in summer of 2011. The presence of high CDOM at the surface layer supplied by vertical mixing seems to affect on the overestimation of Chl a by satellite data.

Red Tide Detection Based on Two Stage Filtering with MODIS Chlorophyll Information (MODIS 클로로필 정보를 이용한 2단계 필터링 기반 적조 탐지)

  • Kim, Yong-Min;Byun, Young-Gi;Kim, Yong-Il;Yu, Ki-Yun
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.170-175
    • /
    • 2008
  • 본 연구는 MODIS에서 제공하는 클로로필 정보를 기반으로 하여 2단계 필터링을 통해 우리나라 동해, 남해 연안에 대규모로 발생했던 Cochlodinium polykrikoides 적조를 탐지하는 알고리즘을 제시한다. 일반적인 적조 탐지 연구들은 클로로필과 적조 발생의 상관성을 이용하여 클로로필의 농도가 높은 해역을 적조 발생 해역으로 탐지한다. 하지만 이 방법의 문제점은 적조가 발생하지 않은 해역을 적조 발생 해역으로 탐지함으로써 commission error를 발생시킨다는 것이다. 따라서 본 연구에서는 이러한 문제점을 극복하기 위해 MODIS에서 제공하는 클로로필 정보를 바탕으로 적조 발생 해역을 추출하고, 2단계 필터링 과정을 적용함으로써 진해, 여수, 남해도 부근 해역에서 발생한 commission error를 제거할 수 있었으며, 그 결과를 국립수산과학원의 적조속보자료와 함께 시각적 평가하여 본 연구에서 제안한 알고리즘의 효용성을 검증하였다. 향후 정량적인 평가를 위해 F-measure, JC(Jaccard coefficient), YC(Yule coefficient), 전체정확도를 탐지정확도 측정치로써 도입하여 정확도평가를 수행할 예정이다.

  • PDF

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model (신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성)

  • PARK, SOYEONA;LEE, TONGSUP;JO, YOUNG-HEON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

Monitoring of Floating Green Algae Using Ocean Color Satellite Remote Sensing (해색위성 원격탐사를 이용한 부유성 녹조 모니터링)

  • Lee, Kwon-Ho;Lee, So-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.137-147
    • /
    • 2012
  • Recently, floating green algae (FGA) in open oceans and coastal waters have been reported over wide area, yet accurate detection of these using traditional ground based measurement and chemical analysis in the laboratory has been difficult or even impossible due to the lack of spatial resolution, coverage, and revisit frequency. In contrast, spectral reflectance measurement makes it possible to quickly assess the chlorophyll content in green algae. Our objectives are to investigate the spectral reflectance of the FGA observed in the Yellow Sea and to develop a new index to detect FGA from satellite imagery, namely floating green algae index (FGAI), which uses relatively simple reflectance ratio technique. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) satellite images at 500m spatial resolution were utilized to produce FGAI which is defined as the ratio between reflectance at 860nm and 660nm bands. Both FGAI results yielded reasonable green algae detection at the regional scale distribution. Especially houly GOCI observations can present more detaield information of FGAI than low-orbit satellite.