• Title/Summary/Keyword: MODIS NDVI

Search Result 166, Processing Time 0.039 seconds

Analysis of MODIS LAI and NDVI Patterns of Broad-leaved Trees by the Timesat Program on the Korean Peninsula (Timesat 프로그램에 의한 한반도 활엽수의 지역별 MODIS LAI 및 NDVI 패턴 분석)

  • Seo, Dae Kyo;Lee, Jeong Min;Lim, Ye Seul;Han, Sang Won;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.13-19
    • /
    • 2017
  • This paper analyzed MODIS data from 2006 to 2013 to determine relationship between meteorological changes and vegetation index. The experimental area was divided into the northern, central and southern regions according to the regional characteristics, and the smoothed MODIS LAI and NDVI were obtained using Timesat. In the case of precipitation, MODIS NDVI had correlation coefficients of 0.66, 0.44 and 0.35 in the northern, central and southern regions and the correlation was the highest in the northern region. In the case of temperature, MODIS LAI had correlation coefficients of 0.66, 0.64 and 0.68, and MODIS NDVI had 0.89, 0.89 and 0.80. The correlation of MODIS NDVI was higher and showed similar positive correlation regardless of region. In addition, The accuracy between Timesat plant seasonal start and actual plant seasonal start in MODIS NDVI was higher than MODIS LAI. The average error in MODIS LAI was 19 days in the central region and 20 days in the southern region. And the average error in MODIS NDVI was 6 days in the central region and 8 days in the southern region.

Estimation of Spatial Evapotranspiration using the Relationship between MODIS NDVI and Morton ET - For Chungjudam Watershed - (MODIS NDVI와 Morton 증발산량의 관계를 이용한 공간증발산량 산정 기법 연구 - 충주댐유역을 대상으로 -)

  • Shin, Hyung-Jin;Ha, Rim;Park, Min-Ji;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The purpose of this study is to estimate monthly Morton evapotranspiration (ET) using normalized difference vegetation index (NDVI) from MODIS satellite images. Morton ET for land surface conditions was evaluated by using daily meteorological data, and the monthly averaged Morton ETs for each land cover were compared with the monthly NDVIs of three years (2000-2002) at Chungjudam Watershed. There was a high correlation between monthly NDVI and Morton ET for the watershed with average coefficient of determination, 0.80. By comparing the MODIS NDVI ET with SLURP Morton ET, the SLURP ET was smaller than the MODIS NDVI ET. This was estimated from the consideration of soil moisture condition for the ET occurrence in the SLURP model, the limited information from the monthly NDVI values, and the errors from the derived regression equations.

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

Comparison of MODIS and VIIRS NDVI Characteristics on Corn and Soybean Cultivation Areas in Illinois (일리노이주 옥수수, 콩 재배지 MODIS와 VIIRS NDVI 특성 비교)

  • Kyungdo Lee;Sookgyeong Kim;Jae-Hyun Ryu;Hoyong Ahn
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1483-1490
    • /
    • 2023
  • We analyzed the potential for joint utilization of Visible Infrared Imaging Radiometer Suite (VIIRS) satellite imagery Normalized Difference Vegetation Index (NDVI) in crop assessment, considering the aging of MODerate resolution Imaging Spectroradiometer (MODIS) satellites. Over 11 years from 2012 to 2022, we examined the characteristics of NDVI changes in corn and soybean cultivation areas in Illinois, USA. VIIRS and MODIS satellite imagery NDVI exhibited a high correlation coefficient of over 0.98. However, during periods of rapid crop growth or decline, VIIRS NDVI showed values approximately 0.12 to 0.14 higher than MODIS. Estimating crop anomaly classes based on NDVI, we observed similar trends in corn and soybean crop anomaly classes in 2018 and 2019. However, in 2022, there appeared to be a significant divergence in crop anomaly classes, suggesting the need for further investigation. The correlation coefficients between MODIS and VIIRS satellite imagery NDVI and corn and soybean yields were consistently high, exceeding 0.8, indicating the potential for quantity estimation using both MODIS and VIIRS satellite imagery. Specifically, for VIIRS NDVI, excluding the increasing trend in crop quantity estimation for soybeans enhanced the correlation, and compared to MODIS, it showed a consistently high correlation with quantity from approximately 16 days earlier, indicating the potential for early estimation.

The Relationship between NDVI and Forest Leaf Area Index in MODIS Land Product

  • Woo C.S.;Lee K.S.;Kim K.T.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.166-169
    • /
    • 2004
  • NDVI has been used to estimate several ecological variables including leaf area index (LAI). Global MODIS LAI data are partially produced by empirical model that is based on the assumption of high correlation between NDVI and LAI. This study attempts to evaluate the MODIS empirical model by comparing with the result obtained from field LAI measurement and Landsat ETM+ reflectance. MODIS LAI product and ancillary data were analyzed over a small forest watershed near the Seoul metropolitan area. The relationship between NDVI of ETM+ and field measured LAI did not correspond to MODIS LAI estimation. Since the study area is mostly covered by very dense and fully closed forest, the correlation between NDVI and LAI might not be high. Although MODIS LAI product has great potential for global environment studies, it needs to be cautious to use them in regional and local area in particular for the forest of dense canopy situation.

  • PDF

A Comparative Analysis of Vegetation and Agricultural Monitoring of Terra MODIS and Sentinel-2 NDVIs (Terra MODIS 및 Sentinel-2 NDVI의 식생 및 농업 모니터링 비교 연구)

  • Son, Moo-Been;Chung, Jee-Hun;Lee, Yong-Gwan;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.101-115
    • /
    • 2021
  • The purpose of this study is to evaluate the compatibility of the vegetation index between the two satellites and the applicability of agricultural monitoring by comparing and verifying NDVI (Normalized Difference Vegetation Index) based on Sentinel-2 and Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Terra MODIS NDVI utilized 16-day MOD13Q1 data with 250 m spatial resolution, and Sentinel-2 NDVI utilized 10-day Level-2A BOA (Bottom Of Atmosphere) data with 10 m spatial resolution. To compare both NDVI, Sentinel-2 NDVIs were reproduced at 16-day intervals using the MVC (Maximum Value Composite) technique. As a result of time series NDVIs based on two satellites for 2019 and compare by land cover, the average R2 (Coefficient of determination) and RMSE (Root Mean Square Error) of the entire land cover were 0.86 and 0.11, which indicates that Sentinel-2 NDVI and MODIS NDVI had a high correlation. MODIS NDVI is overestimated than Sentinel-2 NDVI for all land cover due to coarse spatial resolution. The high-resolution Sentinel-2 NDVI was found to reflect the characteristics of each land cover better than the MODIS NDVI because it has a higher discrimination ability for subdivided land cover and land cover with a small area range.

Comparison of Terra MODIS NDVI and Drone NDVI for Agricultural Drought Monitoring (농업가뭄모니터링을 위한 Terra MODIS NDVI와 드론 NDVI의 비교)

  • Jung, In-Kyun;Kang, Su-Man;Nam, Won-Ho;Jung, Kwang-Wook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.396-396
    • /
    • 2018
  • 우리나라의 가뭄은 통계적으로 5~6년 주기로 발생해 왔으나 최근에는 가뭄의 발생 빈도가 점점 증가하고 주기 또한 짧아지는 경향을 보이고 있다. 가뭄의 패턴 또한 지속적이고 국지적으로 강하게 나타내는 경향이 있어 피해가 심각해지고 있다. 2017년도에는 모내기가 시작되어야 할 시기에 극심한 물 부족으로 이앙시기가 지연되고 밭작물이 마르는 피해를 겪었다. 국가가뭄정보센터의 2017년 가뭄예경보 자료에 따르면, 1~7월에는 안성, 서산, 홍성 지역을 중심으로, 7~9월에는 남해안지역을 중심으로, 10월~12월에는 울주, 경주, 밀양 지역을 중심으로 가뭄이 나타났음을 확인 할 수 있다. 가뭄 파악을 위한 방법 중 하나로 인공위성영상을 활용한 원격탐사 기법이 있으며, 국내에서는 관측주기가 짧고 관측폭이 넓은 Terra MODIS 영상을 활용하는 연구 사례를 다수 찾아볼 수 있다. 최근에는 드론에 NIR, 열화상, 초분광 카메라 등을 탑재하여 탐지범위가 국소적이지만 가뭄에 따른 작물의 상태를 보다 상세하게 파악하기 위한 연구가 시도되고 있다. 본 연구에서는 드론을 이용한 가뭄지역의 영상특성을 분석하는 기초자료를 구축하기 위하여 2017년 극심한 가뭄이 발생하였던 안성지역을 대상으로 Terra MODIS NDVI를 이용한 식생상태지수(VCI), 정규식생지수(SVI)를 분석하여 가뭄으로 추정되는 드론촬영 대상지역을 파악하였으며, 선정된 지역을 대상으로 R-G-NIR 카메라를 탑재한 드론 촬영을 실시하였다. 드론영상의 전처리를 통하여 고해상도 NDVI영상을 작성하고 지상의 작물 및 토지이용 상태에 따른 NDVI 분포특성과 Terra MODIS NDVI와의 차이점을 분석하였다.

  • PDF

A noise reduction method for MODIS NDVI time series data based on statistical properties of NDVI temporal dynamics (MODIS NDVI 시계열 자료의 통계적 특성에 기반한 NDVI 데이터 잡음 제거 방법)

  • Jung, Myunghee;Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.24-33
    • /
    • 2017
  • Multitemporal MODIS vegetation index (VI) data are widely used in vegetation monitoring research into environmental and climate change, since they provide a profile of vegetation activity. However, MODIS data inevitably contain disturbances caused by the presence of clouds, atmospheric variability, and instrument problems, which impede the analysis of the NDVI time series data and limit its application utility. For this reason, preprocessing to reduce the noise and reconstruct high-quality temporal data streams is required for VI analysis. In this study, a data reconstruction method for MODIS NDVI is proposed to restore bad or missing data based on the statistical properties of the oscillations in the NDVI temporal dynamics. The first derivatives enable us to examine the monotonic properties of a function in the data stream and to detect anomalous changes, such as sudden spikes and drops. In this approach, only noisy data are corrected, while the other data are left intact to preserve the detailed temporal dynamics for further VI analysis. The proposed method was successfully tested and evaluated with simulated data and NDVI time series data covering Baekdu Mountain, located in the northern part of North Korea, over the period of interest from 2006 to 2012. The results show that it can be effectively employed as a preprocessing method for data reconstruction in MODIS NDVI analysis.

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.