• Title/Summary/Keyword: MODIS 위성영상

Search Result 169, Processing Time 0.035 seconds

Applicability of Multi-Temporal MODIS Images for Drought Assessment in South Korea (봄 가뭄 평가를 위한 다중시기 MODIS 영상의 적용성 분석)

  • Park, Jung-Sool;Kim, Kyung-Tak;Lee, Jin-Hee;Lee, Kyu-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.176-192
    • /
    • 2006
  • The need for a systematic drought management has increased since last countrywide drought in 2001. Naturally various studies for establishing drought plan and preventing drought disaster have been conducted. MODIS image provided by Terra satellite has effective spatial and temporal resolutions to observe spatial and temporal characteristics of a region. MODIS data products are easy for preprocessing and correcting geometrically and provide various data set in regular which are applicable for drought monitoring. In this study, Ansung river and the upstream of South Han river basin was chosen for case study to identify and assess spring drought. The multi-period MODIS image and accumulated precipitation were used to detect not only the drought year but also the vegetation change of normal year and the result were compared with various spatial data. The result shows NDVI and LSWI with is more appropriate than LST for assesing spring drought in Korea and two month cumulative precipitation has moderate relationship with drought. It is necessary to use MODIS image which has same period and same space for effective drought analysis because drought is also affected by landover and altitude.

  • PDF

Using MODIS Vegetation Index and GIS data for Analysis of Spring Drought (봄 가뭄분석을 위한 식생지수 및 MODIS GIS자료의 활용)

  • Kim, Kyung-Tak;Park, Jung-Sool;Kim, Joo-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1196-1200
    • /
    • 2006
  • 지구 온난화에 따른 기후변화에 의해 동아시아 지역의 가뭄현상은 지속적으로 증가추세이며 우리나라도 최근 중부지방을 중심으로 봄 가뭄이 심화되고 있다. 특히 2001년 봄 가뭄은 기상관측 이래 최악의 가뭄으로 기록되었으며 이에 대한 피해원인 및 가뭄특성에 대한 다양한 연구가 수행되었다. 본 연구에서는 2001년 봄 가뭄을 원격탐사를 기반으로 한 위성영상 자료를 활용하여 분석하였으며, 다양한 파장대의 위성영상 반사특성을 이용하여 생성한 식생지수 및 지표면 복사온도를 가뭄분석을 위한 도구로 활용하였다. 또한, 가뭄의 지속기간이 짧고, 식생의 활력이 크지 않은 봄 가뭄의 특성을 고려하여 토지피복도, 임상도, DEM 등의 GIS자료를 추가적으로 활용하여 가뭄발생지역의 공간적 특성을 분석하였다.

  • PDF

A Comparative Analysis of Field Surveying Vegetation Data and NDVI from KOMPSAT-2 Satellite Imagery (KOMPSAT-2 위성영상을 이용한 정규식생지수와 현장식생 자료의 비교분석)

  • Kim, Gi-Hong;Lee, Jong-Seol;Jung, Jae-Hak;Won, Sang-Yeon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • In this study we tried to compare and analyze KOMPSAT-2 NOVI and vegetation coverage(VC) which is investigated by fieldwork. To standardize KOMPSAT-2 NOVI, we adjusted NOVI using reference data which is atmospheric corrected MODIS NDVI. Each vegetation coverage point data was surveyed in field using portable GPS and compared with NDVI of satellite imagery. As a results, there was high level of correlation in vegetation coverage and NOVI.

Applicability of Vegetation Indices from Terra MODIS and COMS GOCI Imageries (Terra MODIS 위성영상과의 비교를 통한 COMS GOCI 위성영상의 식생지수 적용성 평가)

  • Park, Jin Ki;Kim, Bong Seop;Oh, Si Young;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.47-55
    • /
    • 2013
  • The objective of this study is to evaluate the applicability of Communication, Ocean, and Meteorological Satellite (COMS) Geostationary Ocean Color Imager (GOCI) vegetation indices on a quantitative analysis. For evaluation, the vegetation indices such as RVI, NDVI and SAVI were extracted by using COMS GOCI and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) imageries. The 4,000 points using simple random sampling (SRS) method were randomly extracted from land areas except ocean to compare the vegetation indices from two images. The results of linear regression showed that the regression coefficients of RVI, NDVI, and SAVI between COMS GOCI and Terra MODIS were 0.66~0.82, 0.71~0.83, and 0.71~0.83, respectively. Especially, the regression coefficients of RVI (r=0.85), NDVI (r=0.91) and SAVI (r=0.91) were strongly related from September 2011 to January 2012. Thus, COMS GOCI can be substituted for particular periods and it needs to verify additionally.

A Case Study of Land-cover Classification Based on Multi-resolution Data Fusion of MODIS and Landsat Satellite Images (MODIS 및 Landsat 위성영상의 다중 해상도 자료 융합 기반 토지 피복 분류의 사례 연구)

  • Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1035-1046
    • /
    • 2022
  • This study evaluated the applicability of multi-resolution data fusion for land-cover classification. In the applicability evaluation, a spatial time-series geostatistical deconvolution/fusion model (STGDFM) was applied as a multi-resolution data fusion model. The study area was selected as some agricultural lands in Iowa State, United States. As input data for multi-resolution data fusion, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat satellite images were used considering the landscape of study area. Based on this, synthetic Landsat images were generated at the missing date of Landsat images by applying STGDFM. Then, land-cover classification was performed using both the acquired Landsat images and the STGDFM fusion results as input data. In particular, to evaluate the applicability of multi-resolution data fusion, two classification results using only Landsat images and using both Landsat images and fusion results were compared and evaluated. As a result, in the classification result using only Landsat images, the mixed patterns were prominent in the corn and soybean cultivation areas, which are the main land-cover type in study area. In addition, the mixed patterns between land-cover types of vegetation such as hay and grain areas and grass areas were presented to be large. On the other hand, in the classification result using both Landsat images and fusion results, these mixed patterns between land-cover types of vegetation as well as corn and soybean were greatly alleviated. Due to this, the classification accuracy was improved by about 20%p in the classification result using both Landsat images and fusion results. It was considered that the missing of the Landsat images could be compensated for by reflecting the time-series spectral information of the MODIS images in the fusion results through STGDFM. This study confirmed that multi-resolution data fusion can be effectively applied to land-cover classification.

Comparison and Analysis of Drought Index based on MODIS Satellite Images and ASOS Data for Gyeonggi-Do (경기도 지역에 대한 MODIS 위성영상 및 지점자료기반 가뭄지수의 비교·분석)

  • Yu-Jin, KANG;Hung-Soo, KIM;Dong-Hyun, KIM;Won-Joon, WANG;Han-Eul, LEE;Min-Ho, SEO;Yun-Jae, CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.1-18
    • /
    • 2022
  • Currently, the Korea Meteorological Administration evaluates the meteorological drought by region using SPI6(standardized precipitation index 6), which is a 6-month cumulative precipitation standard. However, SPI is an index calculated only in consideration of precipitation at 69 weather stations, and the drought phenomenon that appears for complex reasons cannot be accurately determined. Therefore, the purpose of this study is to calculate and compare SPI considering only precipitation and SDCI (Scaled Drought Condition Index) considering precipitation, vegetation index, and temperature in Gyeonggi. In addition, the advantages and disadvantages of the station data-based drought index and the satellite image-based drought index were identified by using results calculated through the comparison of SPI and SDCI. MODIS(MODerate resolution Imaging Spectroradiometer) satellite image data, ASOS(Automated Synoptic Observing System) data, and kriging were used to calculate SDCI. For the duration of precipitation, SDCI1, SDCI3, and SDCI6 were calculated by applying 1-month, 3-month, and 6-month respectively to the 8 points in 2014. As a result of calculating the SDCI, unlike the SPI, drought patterns began to appear about 2-month ago, and drought by city and county in Gyeonggi was well revealed. Through this, it was found that the combination of satellite image data and station data increased efficiency in the pattern of drought index change, and increased the possibility of drought prediction in wet areas along with existing dry areas.

A Study of Spring Drought Using Terra MODIS Satellite Image - For the Soyanggang Dam Watershed - (Terra MODIS 위성영상을 이용한 봄 가뭄 연구 - 소양강댐유역을 대상으로 -)

  • SHIN, Hyung-Jin;PARK, Min-Ji;HWANG, Eui-Ho;CHAE, Hyo-Sok;PARK, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.145-157
    • /
    • 2015
  • In 2015, drought was at the worst stage of devastation in Soyanggang Dam watershed. The purpose of this study is to trace the drought area around Soyanggang dam watershed by using Terra MODIS image because it has the ability of spatio-temporal dynamics. The MODIS indices, which included the enhanced vegetation index (NDVI), were extracted from MODIS product MOD13 16-day composite datasets with a spatial resolution of 250m from 2010.01.01 to 2015.06.30. We found that application of Vegetation Condition Index (VCI) and Standardized Vegetation Index (SVI) was suitable for monitoring the drought area. The result can be used to acquire the drought data scattered and demonstrate the potential for the use of MODIS data for temporal and spatial detection of drought effects.

Comparison of Two Evapotranspiration Estimation Models Using Satellite Imagery (인공위성 영상 자료를 이용한 두 공간 증발산 산정 모형의 비교 분석)

  • Hwang, Kyo-Taek;Sur, Chan-Yang;Kim, Hyun-Woo;Choi, Min-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.35-39
    • /
    • 2011
  • 토양과 식물의 잎에서 일어나는 증발산은 주로 증발접시, 침루계 등을 이용하여 실측하거나 에디 공분산, Bowen 비 등을 이용하여 경험적으로 측정할 수 있으나, 이러한 지점별 실측 자료는 공간적인 변동성이 큰 수문기상인자 특성상 지역적인 대표값으로 적용하는 데 어려움이 따른다. 본 연구에서는 이러한 기존 증발산 관측 방법의 단점을 보완하고자 인공위성 영상자료를 기반으로 한 원격탐사 기법을 이용하여 Penman-Monteith (PM)와 Priestley-Taylor (PT) 공간 증발산 산정 모형을 적용, 우리나라 증발산의 시공간적인 분포를 산정하였다. Terra 인공위성에 탑재된 Moderate Resolution Imaging Spectroradiometer (MODIS)로부터 제공되는 위성 영상 자료를 이용하여 기존에 연구된 증발산 모형을 이용하여 증발산을 산정하고 이를 상호 비교함으로써 우리나라에 대한 적용성을 검토하였다. 본 연구의 결과는 토양 및 식생이 소비하는 물의 양을 보다 정확하게 시공간적으로 파악하여 정부 차원의 수자원 관리 계획 수립에 유용하게 이용될 것이다.

  • PDF

Drought Monitoring Accuracy Evaluation through ROC Analysis for Satellite Image based Drought Indices (ROC 분석에 의한 위성기반 가뭄지수의 모니터링 정확도 평가)

  • Park, Seo Yeon;Seo, Chan Yang;Hong, Hyun Pyo;Lee, Joo Heon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.149-149
    • /
    • 2017
  • 최근 지구온난화에 따른 기후변화로 인하여 전 세계적으로 가뭄, 홍수 등의 극한 기후사상이 발생하고 있다. 그 중 가뭄의 발생은 다른 수문학적 재해와는 다르게 장기간에 걸쳐서 발생하고 그 피해 범위가 광범위하게 나타난다. 또한, 기후변화를 고려한 다양한 기후예측모델의 예측 결과는 가뭄 재해가 앞으로 더 심각해질 수 있다는 전망을 하고 있다는 점에서 그 심각성이 더욱 대두되고 있다. 이러한 가뭄을 효과적으로 감시하고 평가할 수 있는 방안이 필요로 하게 되며, 기존의 가뭄지수(drought index)의 단점을 보완할 수 있는 수단으로 높은 활용성을 갖고 있는 위성영상자료를 활용한 효과적인 가뭄모니터링 기술의 개발이 요구되고 있다. 본 연구에서는 가뭄을 시 공간적으로 모니터링하기 위해서 위성자료를 활용하였으며, Terra/Aqua 위성의 MODIS 영상자료 와 TRMM 및 GPM 위성의 강우자료를 활용하여 가뭄을 감시할 수 있는 가뭄지수 인 VHI(Vegetation Health Index), DSI(Drought Severity Index), Water Balance Method를 산정하였다. 산정된 지수의 정확도를 정량적으로 평가하기 위하여 가뭄 피해조사 결과에 의한 2001년 및 2014-2015년 농업적/수문학적 가뭄피해지역과 위성기반 가뭄지수에 의한 가뭄모니터링 결과 간의 ROC 분석을 통해 위성자료 기반 가뭄감시의 적용 가능성을 평가하였다. 본 연구의 결과를 통하여 위성영상 자료를 통하여 산정되는 가뭄지수의 기상학적/농업적/수문학적 가뭄감시 기능 및 적용성이 정량적으로 평가될 수 있을 것으로 판단된다.

  • PDF

Comparison of MODIS Land Surface Temperature and Inland Water Temperature (내륙 수온과 MODIS 지표 온도 데이터의 비교 평가)

  • Na, Yu-Gyung;Kim, Juwon;Lim, Eunha;Park, Woo Jung;Kim, Min Jun;Choi, Jinmu
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.2
    • /
    • pp.352-361
    • /
    • 2013
  • This paper aims to analyze the root mean square errors of MODIS LST data and inland water temperature measurement data in order to use MODIS LST data as an input of numerical weather prediction model. MODIS LST data from July 2011 to June 2012 were compared to water temperature measurement data in the automated water quality measurement network. MODIS data have two composites: day-time and night-time. Monthly errors of day-time and night-time LST range $2{\sim}8^{\circ}C$ and $3{\sim}12^{\circ}C$, respectively. Temporally, monthly errors of day-time LST are less in fall and those of night-time LST are less in summer. Spatially, on the four major rivers including the Han, Nakdong, Geum, and Yeongsan rivers, the errors of Yeongsan river were the smallest, which location is the south-most among them. In this study, the errors of MODIS LST as an input of numerical weather prediction model were analyzed and the results can be used as an error level of MODIS LST data for inaccessible areas such as North Korea.

  • PDF