수문학, 기상학 및 기후학 등에서 필수적인 자료중의 하나인 지상기온 자료는 최근 보건, 생물, 환경 등의 다양한 분야로까지 활용영역이 확대되고 있어 그 중요성이 커지고 있으나 지상관측을 통한 지상기온자료의 취득은 시공간적인 제약이 크기 때문에 실측된 기온자료는 시공간 해상도가 낮아 높은 해상도가 요구되는 연구 분야에서는 활용성에 큰 제약을 갖게 된다. 이를 극복하기 위한 하나의 대안으로 상대적으로 높은 시공간 해상도를 가지고 있는 위성영상자료에서 얻을 수 있는 지표면온도 자료를 이용하여 지상기온을 추정하는 많은 연구들이 수행되어 왔다. 본 연구는 이러한 연구의 일환으로써 기상청에서 제공하고 있는 AWS(Automatic Weather Station)에서 취득된 2010년 지상 온도 자료(AWS data)를 바탕으로 대표적인 지표면 온도자료인 MODIS Land Surface temperature(LST data:MOD11A1)와 지상기온에 영향을 미칠 수 있는 Land Cover Data, DEM(digital elevation model) 등의 보조 자료와 함께 다양한 지구통계 기법들을 이용하여 남한 지역의 지상기온을 추정하였다. 추정 전 2010년 전체(365일) LST자료와 AWS자료와의 차이에 대한 RMSE(Root Mean Square Error)값의 계절별 피복별 분석결과 계절에 따른 RMSE값의 변동계수는 0.86으로 나타났으나 피복에 따른 변동계수는 0.00746으로 나타나 계절별 차이가 피복별 차이보다 큰 것으로 분석 되었다. 계절별 RMSE 값은 겨울철이 가장 낮은 것으로 나타났으며 AWS자료와 LST자료와 보조자료를 이용한 선형 회귀분석결과에서도 겨울철의 결정 계수가 가장 높은 0.818로 나타났으며, 여름철의 경우에는 0.078로 나타나 계절별 차이가 매우 크게 나타났다. 이러한 결과를 바탕으로 지구통계 기법들의 대표적인 방법론인 크리깅 방법 중 일반적으로 많이 사용되고 있는 정규 크리깅, 일반 크리깅, 공동 크리킹, 회귀 크리깅을 이용하여 지상기온을 추정한 후 모델의 정확도를 판단할 수 있는 교차 검증을 실시한 결과 정규 크리깅과 일반 크리깅에 의한 RMSE 값은 1.71, 공동 크리깅과 회귀 크리깅에 의한 RMSE 값은 각각 1.848, 1.63으로 나타나 회귀 크리깅 방법에 의한 추정의 정확도가 가장 높은 것으로 분석되었다.
2008년 동아시아 대륙에서 발생기원이 다른 먼지(황사)와 인위적 오염입자의 광역적 이동 사례를 NOAA위성 RGB 합성영상과 지상 입경별 분진(TSP, $PM_{10}$, $PM_{2.5}$)의 질량농도 관측으로 분석하였다. 또한 Terra/Aqua 위성 MODIS(Moderate resolution Imaging Spectroradiometer) 센서의 AOD(Aerosol Optical Depth)와 FW(Fine aerosol Weighting)를 통해 동아시아 지역에서 발생기원이 다른 대기 에어로졸의 분포와 입자 크기 특성을 분석하였다. 중국 북부와 몽골, 그리고 중국 황토고원에서 모래폭풍이 발생하여 광역적으로 이동하여 청원에 먼지입자(황사)로 영향을 주는 6 개의 사례분석을 실시하였다. 질량농도 TSP중 $PM_{10}$은 70%, $PM_{2.5}$는 16%로 조대입자(> $2.5\;{\mu}m$)의 비율이 큰 것은 사막과 반사막의 자연적 발생원에서 생성되었기 때문이다. 그러나, 모래 폭풍이 이동 과정에서 중국 동부의 산업 지역을 거쳐 유입하는 사례에서는 TSP 중 $PM_{2.5}$가 23%까지 증가하기도 했다. 중국 동부로부터 황해를 거쳐 한반도로 유입한 5개 다른 사례의 경우, TSP 중 $PM_{10}$, $PM_{2.5}$가 각각 82, 65%로 나타났다. 이와 같이 $PM_{2.5}$의 상대적 비율이 증가한 것은 인위적 오염입자의 영향 때문이다. 동아시아 지역에서 인위적 오염입자의 광역적 이동 사례에 대한 평균 AOD는 $0.42{\pm}0.17$로 황사에 의한 AOD($0.36{\pm}0.13$)와 비교하여 대기 에어로졸에 대한 비율이 높게 나타났다. 특히, 중국 동부에서 황해, 한반도, 동해에 이르는 광역적 지역에 AOD값이 높게 분포했다. 인위적 오염입자의 사례는 FW가 평균 $0.63{\pm}0.16$로 모래폭풍의 이동 사례의 $0.52{\pm}0.13$ 보다 높은 값을 보였다. 이는 대기 에어로졸에 대한 인위적 미세 오염 입자의 기여도가 클 수 있음을 제시하고 있다.
2002년부터 2010년까지 봄에 관측된 황사는 모두 66회였다. 월별로 보면, 3월에 26회, 4월에 23회, 5월에 17회로 5월의 황사는 3, 4월에 비해 드문 현상이다. 2010년 5월 22일부터 25일까지 동아시아에 나타난 황사는 발원하여 이동하면서 한반도를 비껴 일본으로 갔다. 이 황사는 22일 몽골 및 중국 북부지역에서 강한 저기압이 발달하면서 그 후면을 따라 남동진 하였고, 3일 뒤인 25일 일본에서 황사가 관측되었다. 본 연구에서는 사례기간의 종관기상 분석, 기류의 이동 방향, 위성을 이용한 황사의 수평 분포 등을 분석하였다. 그 결과 남중국해에서 발달한 저기압이 북상하면서 그 중심이 한반도 가장자리에 위치하였기 때문에 중국 내륙으로 내려온 황사는 저기압성 기류를 따라 한반도를 돌아 일본으로 이동한 것으로 분석되었다. 이러한 기류의 흐름은 850 hPa면의 바람벡터와 풍속장 분석 및 1000 hPa면의 상대습도 분포에서도 나타났다. 300 hPa 일기도상에서 제트기류는 몽골 서쪽 부근에서 남동진하여 몽골 내륙으로 사행하였다. 이후 이 기류의 영향으로 지상에서 한반도에 저기압이 발달하였는데 이는 황사가 한반도를 돌아 일본으로 이동한 결정적인 흐름이었다. 72시간의 후방공기궤적 분석결과, 일본에서 맨눈으로 관측된 곳의 기류는 모두 중국 산동반도와 동중국해에서 유입된 것으로 나타났다. 황사의 수평분포 결과, MODIS 위성의 RGB 영상에서 5월 24일에는 중국 산둥반도와 동중국해, 일본 규슈지역 남서쪽에서 황사가 탐지되었고, 5월 25일에는 동중국해와 일본 남해지역으로 황사가 이동되는 것을 확인할 수 있었다. 지금까지의 황사 연구는 우리나라에 영향을 미치는 황사의 발원지나 황사의 이동 경로 또는 에어러솔의 특성에 대한 연구가 대부분이지만, 이후 본 연구에서 분석된 사례와 같은 황사가 발생했을 경우 황사예보에 효과적으로 활용될 수 있을 것이다.
Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.
부족한 하천유출 관측 데이터는 모델 보정 작업을 어렵게 만들어 모델의 성능 향상을 제한한다. 위성 기반 원격탐사 자료는 수문 관련 데이터의 확보에 적극적으로 활용될 수 있으므로 새로운 대안이 될 수 있다. 최근에는 여러 연구를 통하여 기존의 개념적/물리적 모델보다는 인공지능을 이용한 해법이 더 적절하다는 평가를 받고 있다. 본 연구에서는 다양한 순환 신경망들과 의사결정나무 기반 알고리즘들을 결합한 자료 기반 접근 방식을 제안하였다. 또한 인공지능 학습을 위하여 인공위성 원격탐사 정보의 활용성을 조사하였다. 본 연구에서 위성영상은 MODIS와 SMAP의 자료가 사용된다. 공적으로 공개된 25개 유역의 자료를 사용하여 제안된 접근 방식을 검증하였다. 전통적인 지역화 접근법에서 착안하여 모든 유역의 자료를 통합하여 하나의 자료 기반 모델을 학습하는 전략을 채택하였으며, Leave-one-out cross-validation 지역화 설정을 이용하여 하나의 모델이 다양한 유역의 하천유출을 예측함으로써 제안된 접근 방식의 잠재력을 평가하였다. GRU + Light GBM 모델이 대상 유역에 적합한 모델 조합으로 판명되었으며(25개 미계측 유역 일 하천유량 예측 모형효율계수 평균 0.7187) 하천유출이 매우 작은 시기를 제외하면 우수한 미계측 유역의 하천유출 예측 성능을 보여주었다. 인공위성 원격탐사 정보의 영향력은 최대 10% 정도로 파악되었으며, 위성 정보의 추가 적용이 풍수기 또는 평수기보다는 저수기 또는 갈수기의 하천유출 예측에 더 큰 영향을 미쳤다.
구름은 대기 중에 떠 있는 작은 물방울이나 얼음 알갱이들 또는 혼합물 등으로 구성되며 지구 표면의 약 2/3를 덮고 있다. 위성영상내에서의 구름은 일부 다른 지상 물체 또는 지표면과 유사한 반사도 특성으로 인해 구름과 구름이 아닌 영역을 분리하는 구름탐지는 매우 어려운 작업이다. 특히 뚜렷한 특징을 가지는 두꺼운 구름과 달리 얇은 반투명 구름은 위성영상내에서 구름과 배경의 대비가 약하고 지표면과 혼합되어져 나타나기 때문에 대부분 구름탐지에서 쉽게 놓쳐지고 많은 어려움을 주는 대상으로 작용한다. 이러한 구름탐지의 반투명 구름의 한계점을 극복하기 위해, 본 연구에서는 머신러닝 기법(Random Forest [RF], Convolutional Neural Networks [CNN])을 활용하여 반투명 구름을 중점으로 한 구름탐지 연구를 수행하였다. Reference자료로는 MOderate Resolution Imaging Spectroradiometer (MODIS)에서 제공하는 MOD35자료에서 Cloud Mask와 Cirrus Mask를 활용하였으며 반투명 구름 픽셀을 고려한 모델 훈련을 위해 훈련 데이터의 픽셀 비율을 구름, 반투명 구름, 청천이 약 1:1:1이 되도록 구성하였다. 연구의 정성적 비교 결과, RF와 CNN 모두 반투명 구름을 포함한 다양한 형태의 구름 등을 잘 탐지하였고, RF 모델 결과와 CNN 모델 결과를 혼합한 RF+CNN경우에는 개별 모델의 한계점을 개선시키며 구름탐지가 잘 수행되어진 것을 확인하였다. 연구의 정량적 결과 RF의 전체 정확도(OA) 값은 92%, CNN은 94.11%를 보였고, RF+CNN은 94.29%의 정확도를 보였다.
해수표층온도(sea surface temperature; SST)는 해양환경 변화와 해양생물의 생태활동의 특성을 파악하는데 매우 중요한 환경요소 중 하나이다. 인공위성 열적외선 영상으로는 전 세계의 해수표층온도 변화를 파악하는 데는 유용하지만, 섬들이 많고, 해안선이 복잡한 한반도 연안 해역에서는 고해상도의 해수표층온도 자료를 획득하기에는 어려운 실정이다. 하지만 인간생활에 밀접한 영향을 주고받으며 대부분의 양식장이 분포하고 있는 곳이 연안 해역이므로 상세한 해수표층온도의 변화를 파악하는 것이 매우 중요하다. 이를 위하여 본 연구는 저비용의 지상용 열적외선카메라(FLIR)를 항공기용으로 구축하여 연안 표층수온 추출 가능성을 확인하고자 하였다. 2012년 5월 23일부터 2013년 12월 7일까지 최소 8회 이상 서해 연안에 대하여 항공기 관측실험을 실시하였으며, 이때 구축된 열적외선 센서를 탑재하여 해수표층온도 추출 연구를 수행하였다. 항공기에 탑재된 열적외선 센서로부터 획득된 자료는 대기모델 및 온/습도계 센서를 이용하여 방사보정(radiometric correction)을 수행하였고, Global Positioning System (GPS) 및 Inertial Measurement Unit (IMU) 센서를 이용하여 기하보정(geometric correction)을 자동으로 수행한 후 해수 표층온도 자료를 추출하였다. 그 중 2013년 6월 25일에 관측된 항공기 해수표층온도에 대해 인공위성 및 선박 열적외선 센서를 통해 획득된 해수표층온도 자료와 비교하였으며, 선박 현장 관측 자료와는 $1^{\circ}C$ 이내 오차 범위의 해수표층온도를 획득하였다.
As the "Guidelines for GHG Environmental Assessment" was revised, it pointed out that the developers should evaluate GHG sequestration and storage of the developing site. However, the current guidelines only taking into account the quantitative reduction lost within the development site, and did not consider the qualitative decrease in the carbon sequestration capacity of forest edge produced by developments. In order to assess the quantitative and qualitative effects of vegetation carbon uptake, the CASA-NPP model and satellite image spatial-temporal fusion were used to estimate the annual net primary production in 2005 and 2015. The development projects between 2006 and 2014 were examined for evaluate quantitative changes in development site and qualitative changes in surroundings by development types. The RMSE value of the satellite image fusion results is less than 0.1 and approaches 0, and the correlation coefficient is more than 0.6, which shows relatively high prediction accuracy. The NPP estimation results range from 0 to $1335.53g\;C/m^2$ year before development and from 0 to $1333.77g\;C/m^2$ year after development. As a result of analyzing NPP reduction amount within the development area by type of forest development, the difference is not significant by type of development but it shows the lowest change in the sports facilities development. It was also found that the vegetation was most affected by the edge vegetation of industrial development. This suggests that the industrial development causes additional development in the surrounding area and indirectly influences the carbon sequestration function of edge vegetaion due to the increase of the edge and influx of disturbed species. The NPP calculation method and results presented in this study can be applied to quantitative and qualitative impact assessment of before and after development, and it can be applied to policies related to greenhouse gas in environmental impact assessment.
Variations in phytoplankton concentrations result from changes of the ocean color caused by phytoplankton pigments. Thus, ocean spectral reflectance for low chlorophyll waters are blue and high chlorophyll waters tend to have green reflectance. In the Korea region, clear waters and the open sea in the Kuroshio regions of the East China Sea have low chlorophyll. As one moves even closer In the northwestern part of the East China Sea, the situation becomes much more optically complicated, with contributions not only from higher concentration of phytoplankton, but also from sediments and dissolved materials from terrestrial and sea bottom sources. The color often approaches yellow-brown in the turbidity waters (Case Ⅱ waters). To verify satellite ocean color retrievals, or to develop new algorithms for complex case Ⅱ regions requires ship-based studies. In this study, we compared the chlorophyll retrievals from NASA's SeaWiFS sensor with chlorophyll values determined with standard fluorometric methods during two cruises on Korean NFRDI ships. For the SeaWiFS data, we used the standard NASA SeaWiFS algorithm to estimate the chlorophyll_a distribution around the Korean waters using Orbview/ SeaWiFS satellite data acquired by our HPRT station at NFRDl. We studied In find out the relationship between the measured chlorophyll_a from the ship and the estimated chlorophyll_a from the SeaWiFs satellite data around the northern part of the East China Sea, in February, and May, 2000. The relationship between the measured chlorophyll_a and the SeaWiFS chlorophyll_a shows following the equations (1) In the northern part of the East China Sea. Chlorophyll_a =0.121Ln(X) + 0.504, R²= 0.73 (1) We also determined total suspended sediment mass (55) and compared it with SeaWiFS spectral band ratio. A suspended solid algorithm was composed of in-.situ data and the ratio (L/sub WN/(490 ㎚)L/sub WN/(555 ㎚) of the SeaWiFS wavelength bands. The relationship between the measured suspended solid and the SeaWiFS band ratio shows following the equation (2) in the northern part of the East China Sea. SS = -0.703 Ln(X) + 2.237, R²= 0.62 (2) In the near future, NFRDI will develop algorithms for quantifying the ocean color properties around the Korean waters, with the data from regular ocean observations using its own research vessels and from three satellites, KOMPSAT/OSMl, Terra/MODIS and Orbview/SeaWiFS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.