• Title/Summary/Keyword: MMSE filter

Search Result 41, Processing Time 0.036 seconds

A Novel Equivalent Wiener-Hopf Equation with TDL coefficient in Lattice Structure

  • Cho, Ju-Phil;Ahn, Bong-Man;Hwang, Jee-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.500-504
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. The new algorithm was applied into the identification of an unknown system for evaluating the performance of the proposed method. We compared the Wiener-Hopf solution with the equivalent Wiener-Hopf solution. The simulation results were similar to those obtained in the theoretical analysis. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Robust Speech Recognition in the Car Interior Environment having Car Noise and Audio Output (자동차 잡음 및 오디오 출력신호가 존재하는 자동차 실내 환경에서의 강인한 음성인식)

  • Park, Chul-Ho;Bae, Jae-Chul;Bae, Keun-Sung
    • MALSORI
    • /
    • no.62
    • /
    • pp.85-96
    • /
    • 2007
  • In this paper, we carried out recognition experiments for noisy speech having various levels of car noise and output of an audio system using the speech interface. The speech interface consists of three parts: pre-processing, acoustic echo canceller, post-processing. First, a high pass filter is employed as a pre-processing part to remove some engine noises. Then, an echo canceller implemented by using an FIR-type filter with an NLMS adaptive algorithm is used to remove the music or speech coming from the audio system in a car. As a last part, the MMSE-STSA based speech enhancement method is applied to the out of the echo canceller to remove the residual noise further. For recognition experiments, we generated test signals by adding music to the car noisy speech from Aurora 2 database. The HTK-based continuous HMM system is constructed for a recognition system. Experimental results show that the proposed speech interface is very promising for robust speech recognition in a noisy car environment.

  • PDF

Encounter of Lattice-type coding with Wiener's MMSE and Shannon's Information-Theoretic Capacity Limits in Quantity and Quality of Signal Transmission (신호 전송의 양과 질에서 위너의 MMSE와 샤논의 정보 이론적 정보량 극한 과 격자 코드 와의 만남)

  • Park, Daechul;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.83-93
    • /
    • 2013
  • By comparing Wiener's MMSE on stochastic signal transmission with Shannon's mutual information first proved by C.E. Shannon in terms of information theory, connections between two approaches were investigated. What Wiener wanted to see in signal transmission in noisy channel is to try to capture fundamental limits for signal quality in signal estimation. On the other hands, Shannon was interested in finding fundamental limits of signal quantity that maximize the uncertainty in mutual information using the entropy concept in noisy channel. First concern of this paper is to show that in deriving limits of Shannon's point to point fundamental channel capacity, Shannon's mutual information obtained by exploiting MMSE combiner and Wiener filter's MMSE are interelated by integro-differential equantion. Then, At the meeting point of Wiener's MMSE and Shannon's mutual information the upper bound of spectral efficiency and the lower bound of energy efficiency were computed. Choosing a proper lattice-type code of a mod-${\Lambda}$AWGN channel model and MMSE estimation of ${\alpha}$ confirmed to lead to the fundamental Shannon capacity limits.

Interference Mitigation Technique for OFDMA-based Mesh Networks in Doubly Selective Channels (시간/주파수 선택적 채널환경에서 OFDMA 기반의 메쉬 네트워크를 위한 간섭 완화 기법)

  • Park, Chang-Hwan;Kong, Mi-Kyung;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.17-24
    • /
    • 2012
  • In this paper, we described a received signal model in terms of the starting point of FFT window and derive a post-detection SINR for the receiver with MMSE filter and the corresponding filter coefficients in order to mitigate the effects of interferences caused by time and frequency selective fading channels and time difference of arrival (TDoA) in OFDMA-based Mesh Networks. In addition, we proposed an MMSE Bidirectional Successive Detection (BSD) technique which can suppress the effects of interferences among multi-nodes without any redundant FFT operations. It was shown by simulation that the proposed interference suppression technique has not an error floor at higher average SNR than 30dB in terms of 64QAM uncoded BER contrary to the conventional techniques.

Wiener-Hopf Equation with Robustness to Application System (응용시스템에 강건한 Wiener-Hopf 방정식)

  • Cho, Ju-Phil;Lee, Il-Kyu;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.245-249
    • /
    • 2011
  • In this paper, we propose an equivalent Wiener-Hopf equation. The proposed algorithm can obtain the weight vector of a TDL(tapped-delay-line) filter and the error simultaneously if the inputs are orthogonal to each other. The equivalent Wiener-Hopf equation was analyzed theoretically based on the MMSE(minimum mean square error) method. The results present that the proposed algorithm is equivalent to original Wiener-Hopf equation. In conclusion, our method can find the coefficient of the TDL (tapped-delay-line) filter where a lattice filter is used, and also when the process of Gram-Schmidt orthogonalization is used. Furthermore, a new cost function is suggested which may facilitate research in the adaptive signal processing area.

Spatial Multiplexing System based on Random Unitary Beamforming for MU-MIMO Broadcast Channel (다중사용자 다중송수신안테나 Broadcast 채널에서의 RUB 기반 공간다중화 시스템)

  • Park, Seong-Ho;Park, Ki-Hong;Lee, Jin-Hee;Ko, Young-Chai;Kim, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.105-111
    • /
    • 2010
  • Random unitary beamforming (RUB) is a very low complexity and practical transmission scheme for multiuser MIMO broadcast channel. In this paper, we propose the scheme that obtains the spatial multiplexing gain on the extension of the conventional RUB, that is, the receiver with two antennas is compared to that with one antenna in a conventional RUB, which results in the increased capacity. So, we propose the new codebook and the minimum mean square error successive interference cancellation (MMSE-SIC) receiver filter. We show the simulation result that the sum-rate of proposed system is increased.

Performance Analysis of a Class of Single Channel Speech Enhancement Algorithms for Automatic Speech Recognition (자동 음성 인식기를 위한 단채널 음질 향상 알고리즘의 성능 분석)

  • Song, Myung-Suk;Lee, Chang-Heon;Lee, Seok-Pil;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.86-99
    • /
    • 2010
  • This paper analyzes the performance of various single channel speech enhancement algorithms when they are applied to automatic speech recognition (ASR) systems as a preprocessor. The functional modules of speech enhancement systems are first divided into four major modules such as a gain estimator, a noise power spectrum estimator, a priori signal to noise ratio (SNR) estimator, and a speech absence probability (SAP) estimator. We investigate the relationship between speech recognition accuracy and the roles of each module. Simulation results show that the Wiener filter outperforms other gain functions such as minimum mean square error-short time spectral amplitude (MMSE-STSA) and minimum mean square error-log spectral amplitude (MMSE-LSA) estimators when a perfect noise estimator is applied. When the performance of the noise estimator degrades, however, MMSE methods including the decision directed module to estimate a priori SNR and the SAP estimation module helps to improve the performance of the enhancement algorithm for speech recognition systems.

Performance analysis of WPM-based transmission with equalization-aware bit loading

  • Buddhacharya, Sarbagya;Saengudomlert, Poompat
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.184-196
    • /
    • 2019
  • Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency-division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean-square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit-loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU-R M.1225. Numerical results show that WPM with equalization-aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.

Adaptive Decision Feedback Equalizer using the hierarchical Feedback filter and Soft decision device (계층적 궤환 필터 구조와 연판정 장치를 갖는 적응형 결정 궤환 등화기)

  • Lim, Dong-Guk;Song, Jeong-Ig;Kim, Jae-Mong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.138-145
    • /
    • 2007
  • Wireless transmission system using the multipath channel is affected ISI due to the delay spread. So we use a decision feedback equalizer which consist of decision part and feedback filter for remove the ISI effectively. In this paper, we propose a improved adaptive decision feedback equalizer to mitigate ISI effectively. The proposed adaptive decision feedback equalizer is construct by using soft decision device and hierarchical feedback filter based on MMSE sub-optimal equalizer using the LMS algorithm. Soft decision device mitigate the error propagation in feedback filter by incorrectly detected decision symbol and feedback filter which is divided two step independently mitigate the ISI by using a adaptive algorithm. As a result this structure shows better performance than conventional decision feedback equalizer by mitigating the error propagation in filter cause incorrectly detecting symbol. and we get the MSE more rapidly by using larger step-size due to reduce the number of feedback filter tap. In computer simulation, we compare the bit error rate performance of proposed decision feedback equalizer with conventional one on the S-V channel model for UWB system.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.