• Title/Summary/Keyword: MMSE(Minimum mean-square error estimation)

Search Result 37, Processing Time 0.027 seconds

Vocal separation method using weighted β-order minimum mean square error estimation based on kernel back-fitting (커널 백피팅 알고리즘 기반의 가중 β-지수승 최소평균제곱오차 추정방식을 적용한 보컬음 분리 기법)

  • Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • In this paper, we propose a vocal separation method using weighted ${\beta}$-order minimum mean wquare error estimation (WbE) based on kernel back-fitting algorithm. In spoken speech enhancement, it is well-known that the WbE outperforms the existing Bayesian estimators such as the minimum mean square error (MMSE) of the short-time spectral amplitude (STSA) and the MMSE of the logarithm of the STSA (LSA), in terms of both objective and subjective measures. In the proposed method, WbE is applied to a basic iterative kernel back-fitting algorithm for improving the vocal separation performance from monaural music signal. The experimental results show that the proposed method achieves better separation performance than other existing methods.

Pilot Assisted Channel Frequency Response Estimation for an OFDM System with a Comb-Type Pilot Pattern (빗 형태 패턴을 가지는 OFDM 시스템을 위한 파일럿 심볼 기반 채널 주파수 응답의 추정)

  • Kim, Youngwoong;Kim, Namhoon;Yoon, Eunchul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.6
    • /
    • pp.333-342
    • /
    • 2014
  • The pilot assisted channel frequency response (CFR) estimation schemes for an OFDM-based system with virtual subcarriers are analyzed under the assumption that pilot symbols are located according to a comb-type pattern in the OFDM block. In particular, as the minimum mean square error (MMSE) based scheme aiming to directly predict the channel impulse response and the MMSE based scheme aiming to suppress the leakage have not been clearly compared, by proving that the mean square errors (MSEs) of the latter scheme is always larger than that of the former scheme, this paper shows that the former scheme is superior to the latter scheme. Moreover, the impact of the number of pilots on the performances of the MMSE and least-square based channel estimation schemes are investigated. The performance analyses of the presented schemes are confirmed by computer simulation.

Performance evaluation of estimation methods based on analysis of mean square error bounds for the sparse channel (Sparse 채널에서 최소평균오차 경계값 분석을 통한 채널 추정 기법의 성능 비교)

  • Kim, Hyeon-Su;Kim, Jae-Young;Park, Gun-Woo;Choi, Young-Kwan;Chung, Jae-Hak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2012
  • In this paper, we evaluate and analyze representative estimation methods for the sparse channel. In order to evaluate error performance of matching pursuit(MP) and minimum mean square error(MMSE) algorithm, lower bound of MMSE is determined by Cramer-Rao bound and compared with upper bound of MP. Based on analysis of those bounds, mean square error of MP which is effective in the estimation of sparse channel can be larger than that of MMSE according to the number of estimated tap and signal-to-noise ratio. Simulation results show that the performances of both algorithm are reversed on the sparse channel with Rayleigh fading according to signal-to-noise ratio.

A Low-Complexity 2-D MMSE Channel Estimation for OFDM Systems (OFDM 시스템을 위한 낮은 복잡도를 갖는 2-D MMSE 채널 추정 기법)

  • Kim, Jung-In;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.317-325
    • /
    • 2011
  • For OFDM (Orthogonal Frequency Division Multiplexing) systems, 2-D MMSE (2-Dimensional Minimum Mean Square Error) channel estimation provides optimal performance in frequency/time selective fading channel environment. However, the 2-D MMSE channel estimation has high computational complexity due to the large matrix size, because the 2-D MMSE channel estimation considers time as well as frequency axis for channel estimation. To reduce the computational complexity, we propose a modified 2-D MMSE channel estimator which is based on 1-D MMSE channel estimation with weighted sum. Furthermore, we consider RMS delay spread and Doppler frequency estimation for 2-D MMSE channel estimation. We show that the proposed method can significantly reduce computational complexity as well as that it can perform close to 2-D MMSE channel estimation.

Capacity Optimization of Two-way Amplify-and Forward Relay Networks (Two-way 증폭과 전송 릴레이 네트워크의 용량 최적화)

  • Hanif, Mohammad Abu;Lee, Moon Ho;Park, Ju Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • In this paper, we propose a pilot based channel estimation technique in two-way relay networks. We propose to transmit a pilot symbol together with the data symbol during transmission. In absence of Channel State Information (CSI), destination uses the pilot symbol to estimate the channel. In this system, the relay amplifies the pilot and the data symbol then forward them to the destination using amplify and forward (AF) protocol. We assume that the relay gain is fixed, so the relay does not need to estimate the channel, the destination only estimate the channel. We apply well-known Least-square (LS) and minimum mean-square error (MMSE) channel estimation methods to estimate the channel.

Pilot Symbol Assisted Channel Estimation and Equalization for OFDM Systems in Doubly Selective Channels (주파수 선택적 시변 채널 OFDM 시스템에서의 파일럿 심볼을 이용한 채널 예측 및 등화)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1408-1418
    • /
    • 2007
  • In this paper, we analyze the performance of pilot symbol assisted channel estimation and equalization schemes for OFDM systems over frequency-selective time-varying channels and propose methods to improve the system performance. In the least square(LS) and linear minimum mean square error(MMSE) channel estimation, time domain windowing is introduced for banding the frequency domain channel matrix. The linear MMSE and decision feedback equalization schemes are employed with the pilot symbols for channel estimation taken into account in the equalization process. To reduce computational complexity, the band LU matrix factorization algorithm is introduced in solving the linear systems involved in the equalization, and the performances are compared with the known previous results by computer simulations. When time domain windowing is employed in the decision feedback equalization, the matrix related with the decision feedback process is shown to be unhanded and the resultant performance degradation is analyzed.

Decision Feedback Equalizer for DS-UWB Systems

  • Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.500-508
    • /
    • 2008
  • Direct-sequence ultra-wideband(DS-UWB) system is being considered as one of promising transmission technologies for wireless personal area networks(WPANs). Due to relatively low spreading factors and huge bandwidth of transmit signal, a DS-UWB receiver needs to be equipped not only with a rake receiver but also with an equalizer, of which the equalizer is not required for traditional direct-sequence code division multiple access(DS-CDMA) systems. The number of rake fingers is limited in practice, influencing the performance of the subsequent equalizer. In this paper, we derive a decision feedback equalizer(DFE) for DS-UWB systems based on the minimum mean square error(MMSE) criterion, and investigate the impact of various parameters on the DFE performance in realistic scenarios. In particular, we propose an approach to improving the performance of the DFE using additional channel estimates for multipaths not combined in the rake receiver, and discuss how the accuracy of channel estimation affects desirable DFE configuration. Moreover, we present simulation results that show the impact of turbo equalization on the DFE performance.

Design of a Frequency Domain Equalizer Algorithm for MBOK DS-UWB System (MBOK DS-UWB 시스템을 위한 주파수 영역 등화기 알고리즘의 설계)

  • Kang, Shin-Woo;Im, Se-Bin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1034-1041
    • /
    • 2007
  • In this paper, we propose a FD USE (frequency domain minimum mean square error) equalizer algorithm for MBOK DS-UWB (M-ary bi-orthogonal keying direct sequence UWB) systems considered as a PHY proposal for high-speed wireless communication in IEEE 802.15.TG3a. The conventional FD MMSE equalization scheme has a structural limit due to insertion of the cyclic prefix (CP) in all transmit packets, but the proposed scheme is able to equalize the channel effect without CP. In order to overcome channel estimation error by multipath delay, we introduce a moving FFT and a moving average scheme. Compared with conventional FD MMSE equalizer and the traditional TD (time domain) MMSE-RAKE receiver, the proposed FD MMSE equalizer has better BER performance and we demonstrate this result by computer simulation.

Reduced-state sequence estimation for trellis-coded 8PSK/cyclic prefixed single carrier (트렐리스 부호화된 8PSK/CPSC를 위한 RSSE 방식)

  • 고상보;강훈철;좌정우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.20-23
    • /
    • 2003
  • A reduced-state sequence estimation(RSSE) for trellis-coded (TC) 8PSK/cyclic prefixed single carrier(CPSC) with minimum mean-square error-liner equalization(MMSE-LE) on frequency-selective Rayleigh fading channels is proposed. The Viterbi algorithm (VA) is used to search for the best path through the reduced-state trellis combined equalization and TCM decoding. The symbol error probability of the proposed scheme is confirmed by computer simulation.

  • PDF

Channel Estimation Based on LMS Algorithm for MIMO-OFDM System (MIMO-OFDM을 위한 LMS 알고리즘 기반의 채널추정)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1455-1461
    • /
    • 2012
  • MIMO-OFDM which is one of core techniques for the high-speed mobile communication system requires the efficient channel estimation method with low estimation error and computational complexity, for accurately receiving data. In this paper, we propose a channel estimation algorithm with low channel estimation error comparing with LS which is primarily employed to the MIMO-OFDM system, and with low computational complexity comparing with MMSE. The proposed algorithm estimates channel vectors based on the LMS adaptive algorithm in the time domain, and the estimated channel vector is sent to the detector after FFT. We also suggest a preamble architecture for the proposed MIMO-OFDM channel estimation algorithm. The computer simulation example is provided to illustrate the performance of the proposed algorithm.