• 제목/요약/키워드: MMCs

검색결과 99건 처리시간 0.024초

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

$Al/{Al_2}{O_3}$금속복합재료의 기계적 성질과 피로거동 (Mechanical Property and Fatigue Bahavior of $Al/{Al_2}{O_3}$ Metal Matrix Composite)

  • 송정일;임홍준;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.753-764
    • /
    • 1996
  • The metal matrix composites(MMC) are currently receiving a great deal of attention. These composites possess exellent mechanical and physical properties such as modulus, strength, wear resistance and thermal stability, which make them very attractive for use in automotive piston. In this study, $Al/{Al_2}{O_3}$(15%) composites are fabricated by the squeeze casting method. Mechanical properties such as tensile strength and ductility are performed at room and elevated temperature($250^{\circ}C$ and $350^{\circ}C$), respectively. Through thermomechanical analyser, thermal expansion coefficient of $Al/{Al_2}{O_3}$ composites are conducted for ranging from room temperature to ($400^{\circ}C$.And bending fatigue tests are also performed by the rotary bending machine at room temperature.The tensile strength and elastic modulus have been improved up to 38% and 35% by the addition of the reinforcements, respectively. Thermal expansion coefficients of MMCs which is located normal and parralel to the applied pressure are showed slightly different less than 10%. Fatigue strengh of the composite was improved by about 20% compared with that of unreinforced Al alloy. The results of this study will be used to understand the basic fracture behavior of MMCs and eventually to expand the applocation of MMCs as a machine parts undertaken various loadings.

초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구 (A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics)

  • 이준현
    • 비파괴검사학회지
    • /
    • 제13권4호
    • /
    • pp.9-17
    • /
    • 1994
  • 초음파법은 종래의 금속재료는 물론 최근의 금속 복합재료등과 같은 신소재의 재료특성을 비파괴적으로 평가할 수 있는 일반적인 방법이다. 그러나 이와같은 재료들의 비파괴 특성 평가를 위해 초음파법을 적용시킬 경우 무엇보다도 재료 내부를 전파하는 탄성파의 전파특성에 대한 물리적 현상에 대한 이해가 필수적이다. 본 연구에서는 금속 복합재료의 제조공정에서 일반적으로 많이 발생되는 기지재와 강화재 사이의 계면 문제 및 기지재에 분포하는 강화재의 체적함유율의 변화등에 의한 유효 평면파의 다중 산란 특성을 SiC 입자강화 6061 알루미늄 복합재료에 대해 Lax의 준 결정 근사(quasi-crystalline approximation) 이론 및 소감정리 (extinction theorem)를 기초로 하여 이론적으로 해석하였다. 그 결과 SiC 입자 강화재의 체적 함유율의 변화에 대한 유효 평면파의 위상속도 및 감쇠의 주파수 의존 특성과 금속복합재료에 있어서의 기지재와 강화재 사이의 계면층의 탄성특성에 대한 위상속도의 변화 특성이 명확하게 규명되었다.

  • PDF

용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석 (Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs)

  • 정창규;변현중;정성욱;남현욱;한경섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.319-324
    • /
    • 2001
  • A finite element model for the process of squeeze casting for metal matrix composites (MMCs) in cylindrical mold is developed. The fluid flow and the heat transfer are the fundamental phenomena in the squeeze casing process. To describe heat transfer with solidification of molten aluminum, the energy equation in terms of temperature and enthalpy are applied to two dimensional axisymmetric model which is similar to the experimental system. And one dimensional flow model is employed to simulate the transient metal flow. The direct iteration technique was used to solve the resulting nonlinear algebraic equations. A computer program is developed to calculate the enthalpy, temperature and fluid velocity. Cooling curves and temperature distribution during infiltration and solidification are calculated for pure aluminum. The temperature is measured and recorded experimentally. At two points of the perform inside and one point of the mold outside, thermocouple wire are installed. The time-temperature data are compared with the calculated cooling curves. The experimental results show that the finite element model can estimate the solidification time and predict the cooling process.

  • PDF

횡하중을 받는 SiC/Ti-15-3 MMC 복합재 계면영역에서의 탄소성 응력장분포거동(I) (Elastic-Plastic Stress Distributions Behavior in the Interface of SiC/Ti-15-3 MMC under Transverse Loading(I))

  • 강지웅;김상태;권오헌
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.25-30
    • /
    • 2004
  • Unidirectional fiber-metal matrix composites have superior mechanical properties along the longitudinal direction. However, the applicability of continuous fiber reinforced MMCs is somewhat limited due to their relatively poor transverse properties. Therefore, the transverse properties of MMCs are significantly influenced by the properties of the fiber/matrix interface. In this study, the interfacial stress states of transversely loaded unidirectional fiber reinforced metal matrix composites investigated by using elastic-plastic finite element analysis. Different fiber volume fractions $(5-60\%)$ were studied numerically. The interface was treated as thin layer (with different properties) with a finite thickness between the fiber and the matrix. The fiber is modeled as transversely isotropic linear-elastic, and the matrix as isotropic elastic-plastic material. The analyses were based on a two-dimensional generalized plane strain model of a cross-section of an unidirectional composite by the ANSYS finite element analysis code.

Circulating Current Harmonics Suppression for Modular Multilevel Converters Based on Repetitive Control

  • Li, Binbin;Xu, Dandan;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1100-1108
    • /
    • 2014
  • Modular multilevel converters (MMCs) have emerged as the most promising topology for high and medium voltage applications for the coming years. However, one particular negative characteristic of MMCs is the existence of circulating current, which contains a dc component and a series of low-frequency even-order ac harmonics. If not suppressed, these ac harmonics will distort the arm currents, increase the power loses, and cause higher current stresses on the semiconductor devices. Repetitive control (RC) is well known due to its distinctive capabilities in tracking periodic signals and eliminating periodic errors. In this paper, a novel circulating current control scheme base on RC is proposed to effectively track the dc component and to restrain the low-frequency ac harmonics. The integrating function is inherently embedded in the RC controller. Therefore, the proposed circulating current control only parallels the RC controller with a proportional controller. Thus, conflicts between the RC controller and the traditional proportional integral (PI) controller can be avoided. The design methodologies of the RC controller and a stability analysis are also introduced. The validity of the proposed circulating current control approach has been verified by simulation and experimental results based on a three-phase MMC downscaled prototype.

탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성 (Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers)

  • 봉하동;송정일;한경섭
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

용탕주조법을 이용한 금속복합재료 제조공정의 열전달 해석 (Numerical Modeling of Heat Transfer for Squeeze Casting of MMCs)

  • 정창규;정성욱;남현욱;한경섭
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2104-2113
    • /
    • 2002
  • A finite element model is developed for the process of squeeze casting of metal matrix composites (MMCs) in cylindrical molds. The fluid flow and the heat transit. are fundamental phenomena in squeeze casting. To describe heat transfer in the solidification of molten aluminum, the energy equation is written in terms of temperature and enthalpy are applied in an axisymmetric model which is similar to the experimental system. A one dimensional flow model simulates the transient metal flow. A direct iteration technique was used to solve the resulting nonlinear algebraic equations, using a computer program to calculate the enthalpy, temperature and fluid velocity. The cooling curves and temperature distribution during infiltration and solidification were calculated fer pure aluminum. Experimentally, the temperature was measured and recorded using thermocouple wire. The measured time-temperature data were compared with the calculated cooling curves. The resulting agreement shows that the finite element model can accurately estimate the solidification time and predict the cooling process.

음향방출과 SFC 시험법에 의한 금속복합재료의 기지재 열처리 효과에 따른 미시적 변형기구 특성 평가 (Evaluation of Microscopic Deformation Behaviors of Metal Matrix Composite due to Heat Treatment by means of SFC Test and Acoustic Emission)

  • 강문필;이준현
    • 비파괴검사학회지
    • /
    • 제20권5호
    • /
    • pp.381-389
    • /
    • 2000
  • 금속기지 복합재료의 미시적 파손기구는 작용하중의 방향, 재료의 열처리 상태, 기지재 및 강화재의 특성, 섬유체적률 등 여러 인자의 영향을 받는다. 이중 특히 재료의 열처리는 금속기지 복합재료의 기계적 특성을 지배하는 주요한 인자인 강화섬유와 기지재 사이의 계면특성에 큰 영향을 준다. 강화섬유와 기지재는 매우 큰 열팽창계수 차이를 가지기 때문에 금속기지 복합재료의 제조과정에 있어서 급격한 온도강하가 있을 경우에는 강화섬유와 기지재 사이의 계면에서는 잔류응력이 형성되며 이 때 발생한 잔류응력은 금속복합재료의 파손기구는 물론 기지재와 강화섬유 사이의 계면전단강도에도 중대한 영향을 미칠 수도 있다. 따라서 금속복합재료에 있어서 기지재와 강화재 사이의 계면전단강도에 대한 잔류응력의 영향을 평가하는 것은 금속복합재료의 실질적인 응용측면에서는 매우 중요한 과제라 할 수 있다. 복합재료에 있어서의 음향방출 기법과 SFC시험법을 동시에 이용하면 기지재와 강화재의 균열 및 기지재와 강화재 사이의 계면분리현상에 의한 미시적 파손기구를 명확하게 분리, 관찰할 수 있는 크나큰 이점이 있다. 따라서 된 연구에서는 음향방출기법과 SFC시험법을 이용하여 금속복합재료의 열처리 효과에 따른 미시적 파손기구 및 계면전판강도 변화특성을 체계적으로 연구, 고찰하였다.

  • PDF

Hybrid(HTZ/${Al_2}{O_3}p$) MMC의 제작과 Aging에 따른 물성분석 (Fabrication of Hybrid(HTZ/${Al_2}{O_3}p$) MMCs and Properties Degradation due to Aging)

  • 남현욱;정성욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 1999
  • 본 연구에서는 AC8A 알루미늄 합금과 HTZ 단섬유 및 알루미나(A12O3) 입자(particle)를 이용하여 HTZ 및 혼합 금속복합재료를 개발하고 정하중 시험을 통하여 개발된 재료의 상온 및 고온 기계적 물성을 규명하였으며, 개발된 금속복합재료가 고온에 노출되어 있을 경우 발생하는 aging에 의한 재료의 물성 변화를 분석하였다.

  • PDF