• Title/Summary/Keyword: MLP neural network

Search Result 260, Processing Time 0.022 seconds

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Employing TLBO and SCE for optimal prediction of the compressive strength of concrete

  • Zhao, Yinghao;Moayedi, Hossein;Bahiraei, Mehdi;Foong, Loke Kok
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.753-763
    • /
    • 2020
  • The early prediction of Compressive Strength of Concrete (CSC) is a significant task in the civil engineering construction projects. This study, therefore, is dedicated to introducing two novel hybrids of neural computing, namely Shuffled Complex Evolution (SCE) and Teaching-Learning-Based Optimization (TLBO) for predicting the CSC. The algorithms are applied to a Multi-Layer Perceptron (MLP) network to create the SCE-MLP and TLBO-MLP ensembles. The results revealed that, first, intelligent models can properly handle analyzing and generalizing the non-linear relationship between the CSC and its influential parameters. For example, the smallest and largest values of the CSC were 17.19 and 58.53 MPa, and the outputs of the MLP, SCE-MLP, and TLBO-MLP range in [17.61, 54.36], [17.69, 55.55] and [18.07, 53.83], respectively. Second, applying the SCE and TLBO optimizers resulted in increasing the correlation of the MLP products from 93.58 to 97.32 and 97.22%, respectively. The prediction error was also reduced by around 34 and 31% which indicates the high efficiency of these algorithms. Moreover, regarding the computation time needed to implement the SCE-MLP and TLBO-MLP models, the SCE is a considerably more time-efficient optimizer. Nevertheless, both suggested models can be promising substitutes for laboratory and destructive CSC evaluative models.

A Study on Function Discrimination for EMG Signals Using Neural Network and Fuzzy Filter (신경회로망과 퍼지필터를 사용한 근전도신호의 기능변별에 관한 연구)

  • 장영건;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.355-364
    • /
    • 1994
  • The most important requirement for the controller of a prosthetic arm is that it has a high fidelity discriminator where the motion control may be performed open loop using EMG signals as a control source. Therefore, it is very effective method to reduce the influence of misclassification of classifier for the total system performance. This paper presents the new function discrimination method which combines MLP classifier and frizzy filter by stages for the requirement. The major advantage of MLP is a consistent learning capability for the easy adaptation to environments. The fuzzy filter uses all informations of MLP outputs and prior EMG activity informations which increase as the experience increases. That property is superior to one which uses maximum output of MLP in view of information amounts and quality. Simulation result shows that proposed method is superior to the probabilistic model, MLP model and the combined model of both in the respect of discrimination quaity.

  • PDF

Design of CNN with MLP Layer (MLP 층을 갖는 CNN의 설계)

  • Park, Jin-Hyun;Hwang, Kwang-Bok;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.776-782
    • /
    • 2018
  • After CNN basic structure was introduced by LeCun in 1989, there has not been a major structure change except for more deep network until recently. The deep network enhances the expression power due to improve the abstraction ability of the network, and can learn complex problems by increasing non linearity. However, the learning of a deep network means that it has vanishing gradient or longer learning time. In this study, we proposes a CNN structure with MLP layer. The proposed CNNs are superior to the general CNN in their classification performance. It is confirmed that classification accuracy is high due to include MLP layer which improves non linearity by experiment. In order to increase the performance without making a deep network, it is confirmed that the performance is improved by increasing the non linearity of the network.

APPLICATION OF NEURAL NETWORK FOR THE CLOUD DETECTION FROM GEOSTATIONARY SATELLITE DATA

  • Ahn, Hyun-Jeong;Ahn, Myung-Hwan;Chung, Chu-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.34-37
    • /
    • 2005
  • An efficient and robust neural network-based scheme is introduced in this paper to perform automatic cloud detection. Unlike many existing cloud detection schemes which use thresholding and statistical methods, we used the artificial neural network methods, the multi-layer perceptrons (MLP) with back-propagation algorithm and radial basis function (RBF) networks for cloud detection from Geostationary satellite images. We have used a simple scene (a mixed scene containing only cloud and clear sky). The main results show that the neural networks are able to handle complex atmospheric and meteorological phenomena. The experimental results show that two methods performed well, obtaining a classification accuracy reaching over 90 percent. Moreover, the RBF model is the most effective method for the cloud classification.

  • PDF

Slime mold and four other nature-inspired optimization algorithms in analyzing the concrete compressive strength

  • Yinghao Zhao;Hossein Moayedi;Loke Kok Foong;Quynh T. Thi
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.65-91
    • /
    • 2024
  • The use of five optimization techniques for the prediction of a strength-based concrete mixture's best-fit model is examined in this work. Five optimization techniques are utilized for this purpose: Slime Mold Algorithm (SMA), Black Hole Algorithm (BHA), Multi-Verse Optimizer (MVO), Vortex Search (VS), and Whale Optimization Algorithm (WOA). MATLAB employs a hybrid learning strategy to train an artificial neural network that combines least square estimation with backpropagation. Thus, 72 samples are utilized as training datasets and 31 as testing datasets, totaling 103. The multi-layer perceptron (MLP) is used to analyze all data, and results are verified by comparison. For training datasets in the best-fit models of SMA-MLP, BHA-MLP, MVO-MLP, VS-MLP, and WOA-MLP, the statistical indices of coefficient of determination (R2) in training phase are 0.9603, 0.9679, 0.9827, 0.9841 and 0.9770, and in testing phase are 0.9567, 0.9552, 0.9594, 0.9888 and 0.9695 respectively. In addition, the best-fit structures for training for SMA, BHA, MVO, VS, and WOA (all combined with multilayer perceptron, MLP) are achieved when the term population size was modified to 450, 500, 250, 150, and 500, respectively. Among all the suggested options, VS could offer a stronger prediction network for training MLP.

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

Machine Printed Character Recognition Based on the Combination of Recognition Units Using Multiple Neural Networks (다중 신경망을 이용한 인식단위 결합 기반의 인쇄체 문자인식)

  • Lim, Kil-Taek;Kim, Ho-Yon;Nam, Yun-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.777-784
    • /
    • 2003
  • In this Paper. we propose a recognition method of machine printed characters based on the combination of recognition units using multiple neural networks. In our recognition method, the input character is classified into one of 7 character types among which the first 6 types are for Hangul character and the last type is for non-Hangul characters. Hangul characters are recognized by several MLP (multilayer perceptron) neural networks through two stages. In the first stage, we divide Hangul character image into two or three recognition units (HRU : Hangul recognition unit) according to the combination fashion of graphemes. Each recognition unit composed of one or two graphemes is recognized by an MLP neural network with an input feature vector of pixel direction angles. In the second stage, the recognition aspect features of the HRU MLP recognizers in the first stage are extracted and forwarded to a subsequent MLP by which final recognition result is obtained. For the recognition of non-Hangul characters, a single MLP is employed. The recognition experiments had been performed on the character image database collected from 50,000 real letter envelope images. The experimental results have demonstrated the superiority of the proposed method.

A study on the connected-digit recognition using MLP-VQ and Weighted DHMM (MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구)

  • Chung, Kwang-Woo;Hong, Kwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.96-105
    • /
    • 1998
  • The aim of this paper is to propose the method of WDHMM(Weighted DHMM), using the MLP-VQ for the improvement of speaker-independent connect-digit recognition system. MLP neural-network output distribution shows a probability distribution that presents the degree of similarity between each pattern by the non-linear mapping among the input patterns and learning patterns. MLP-VQ is proposed in this paper. It generates codewords by using the output node index which can reach the highest level within MLP neural-network output distribution. Different from the old VQ, the true characteristics of this new MLP-VQ lie in that the degree of similarity between present input patterns and each learned class pattern could be reflected for the recognition model. WDHMM is also proposed. It can use the MLP neural-network output distribution as the way of weighing the symbol generation probability of DHMMs. This newly-suggested method could shorten the time of HMM parameter estimation and recognition. The reason is that it is not necessary to regard symbol generation probability as multi-dimensional normal distribution, as opposed to the old SCHMM. This could also improve the recognition ability by 14.7% higher than DHMM, owing to the increase of small caculation amount. Because it can reflect phone class relations to the recognition model. The result of my research shows that speaker-independent connected-digit recognition, using MLP-VQ and WDHMM, is 84.22%.

  • PDF