• Title/Summary/Keyword: MLP(Multi-Perceptron)

Search Result 250, Processing Time 0.03 seconds

Comparison of Factors for Controlling Effects in MLP Networks (다층 퍼셉트론에서 구조인자 제어 영향의 비교)

  • 윤여창
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.537-542
    • /
    • 2004
  • Multi-Layer Perceptron network has been mainly applied to many practical problems because of its nonlinear mapping ability. However the generalization ability of MLP networks may be affected by the number of hidden nodes, the initial values of weights and the training errors. These factors, if improperly chosen, may result in poor generalization ability of MLP networks. It is important to identify these factors and their interaction in order to control effectively the generalization ability of MLP networks. In this paper, we have empirically identified the factors that affect the generalization ability of MLP networks, and compared their relative effects on the generalization performance for the conventional and visualized weight selecting methods using the controller box.

Method for Automatic Switching Screen of OST-HMD using Gaze Depth Estimation (시선 깊이 추정 기법을 이용한 OST-HMD 자동 스위칭 방법)

  • Lee, Youngho;Shin, Choonsung
    • Smart Media Journal
    • /
    • v.7 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • In this paper, we propose automatic screen on / off method of OST-HMD screen using gaze depth estimation technique. The proposed method uses MLP (Multi-layer Perceptron) to learn the user's gaze information and the corresponding distance of the object, and inputs the gaze information to estimate the distance. In the learning phase, eye-related features obtained using a wearable eye-tracker. These features are then entered into the Multi-layer Perceptron (MLP) for learning and model generation. In the inference step, eye - related features obtained from the eye tracker in real time input to the MLP to obtain the estimated depth value. Finally, we use the results of this calculation to determine whether to turn the display of the HMD on or off. A prototype was implemented and experiments were conducted to evaluate the feasibility of the proposed method.

Implementation and Analysis of Power Analysis Attack Using Multi-Layer Perceptron Method (Multi-Layer Perceptron 기법을 이용한 전력 분석 공격 구현 및 분석)

  • Kwon, Hongpil;Bae, DaeHyeon;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.997-1006
    • /
    • 2019
  • To overcome the difficulties and inefficiencies of the existing power analysis attack, we try to extract the secret key embedded in a cryptographic device using attack model based on MLP(Multi-Layer Perceptron) method. The target of our proposed power analysis attack is the AES-128 encryption module implemented on an 8-bit processor XMEGA128. We use the divide-and-conquer method in bytes to recover the whole 16 bytes secret key. As a result, the MLP-based power analysis attack can extract the secret key with the accuracy of 89.51%. Additionally, this MLP model has the 94.51% accuracy when the pre-processing method on power traces is applied. Compared to the machine leaning-based model SVM(Support Vector Machine), we show that the MLP can be a outstanding method in power analysis attacks due to excellent ability for feature extraction.

Mobile Router Decision Using Multi-layered Perceptron in Nested Mobile Networks (중첩 이동 네트워크에서 Multi-layered Perceptron을 이용한 최적의 이동 라우터 지정 방안)

  • Song, Jiyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2843-2852
    • /
    • 2013
  • In the nested mobile network environment, the mobile node selects one of multiple mobile routers. The MR(Mobile Router) by existing top-down or bottom-up methods may not be the optimal MR if the numbers of mobile nodes and routers are substantially increased, and the scale of the network is increased drastically. Since an inappropriate MR decision causes handover or binding renewal to mobile nodes, determining of the optimal MR is important for efficiency. In this paper, we propose an algorithm that decides on the optimal MR using MR QoS(Quality of Service) information, and we describe how to understand the various structured MLP(Multi-Layered Perceptron) based on the algorithm. In conclusion, we prove the ability of the suggested neural network for a nesting mobile network through the performance analysis of each learned MLP.

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.

Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics (신경망이론은 이용한 폴리우레탄 코팅포 촉감의 예측)

  • 이정순;신혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.1
    • /
    • pp.152-159
    • /
    • 2002
  • Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.

A Segmentation-Based HMM and MLP Hybrid Classifier for English Legal Word Recognition (분할기반 은닉 마르코프 모델과 다층 퍼셉트론 결합 영문수표필기단어 인식시스템)

  • 김계경;김진호;박희주
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.200-207
    • /
    • 2001
  • In this paper, we propose an HMM(Hidden Markov modeJ)-MLP(Multi-layer perceptron) hybrid model for recognizing legal words on the English bank check. We adopt an explicit segmentation-based word level architecture to implement an HMM engine with nonscaled and non-normalized symbol vectors. We also introduce an MLP for implicit segmentation-based word recognition. The final recognition model consists of a hybrid combination of the HMM and MLP with a new hybrid probability measure. The main contributions of this model are a novel design of the segmentation-based variable length HMMs and an efficient method of combining two heterogeneous recognition engines. ExperimenLs have been conducted using the legal word database of CENPARMI with encouraging results.

  • PDF

Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.

Efficient Text Localization using MLP-based Texture Classification (신경망 기반의 텍스춰 분석을 이용한 효율적인 문자 추출)

  • Jung, Kee-Chul;Kim, Kwang-In;Han, Jung-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.180-191
    • /
    • 2002
  • We present a new text localization method in images using a multi-layer perceptron(MLP) and a multiple continuously adaptive mean shift (MultiCAMShift) algorithm. An automatically constructed MLP-based texture classifier generates a text probability image for various types of images without an explicit feature extraction. The MultiCAMShift algorithm, which operates on the text probability Image produced by an MLP, can place bounding boxes efficiently without analyzing the texture properties of an entire image.

Improvement of multi layer perceptron performance using combination of gradient descent and harmony search for prediction of groundwater level (지하수위 예측을 위한 경사하강법과 화음탐색법의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.186-186
    • /
    • 2022
  • 강수 및 침투 등으로 발생하는 지하수위의 변동을 예측하는 것은 지하수 자원의 활용 및 관리에 필수적이다. 지하수위의 변동은 지하수 자원의 활용 및 관리뿐만이 아닌 홍수 발생과 지반의 응력상태 등에 직접적인 영향을 미치기 때문에 정확한 예측이 필요하다. 본 연구는 인공신경망 중 다층퍼셉트론(Multi Layer Perceptron, MLP)을 이용한 지하수위 예측성능 향상을 위해 MLP의 구조 중 Optimizer를 개량하였다. MLP는 입력자료와 출력자료간 최적의 상관관계(가중치 및 편향)를 찾는 Optimizer와 출력되는 값을 결정하는 활성화 함수의 연산을 반복하여 학습한다. 특히 Optimizer는 신경망의 출력값과 관측값의 오차가 최소가 되는 상관관계를 찾는 연산자로써 MLP의 학습 및 예측성능에 직접적인 영향을 미친다. 기존의 Optimizer는 경사하강법(Gradient Descent, GD)을 기반으로 하는 Optimizer를 사용했다. 하지만 기존의 Optimizer는 미분을 이용하여 상관관계를 찾기 때문에 지역탐색 위주로 진행되며 기존에 생성된 상관관계를 저장하는 구조가 없어 지역 최적해로 수렴할 가능성이 있다는 단점이 있다. 본 연구에서는 기존 Optimizer의 단점을 개선하기 위해 지역탐색과 전역탐색을 동시에 고려할 수 있으며 기존의 해를 저장하는 구조가 있는 메타휴리스틱 최적화 알고리즘을 이용하였다. 메타휴리스틱 최적화 알고리즘 중 구조가 간단한 화음탐색법(Harmony Search, HS)과 GD의 결합모형(HS-GD)을 MLP의 Optimizer로 사용하여 기존 Optimizer의 단점을 개선하였다. HS-GD를 이용한 MLP의 성능검토를 위해 이천시 지하수위 예측을 실시하였으며 예측 결과를 기존의 Optimizer를 이용한 MLP 및 HS를 이용한 MLP의 예측결과와 비교하였다.

  • PDF