• Title/Summary/Keyword: MLCCs

Search Result 35, Processing Time 0.018 seconds

Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs (이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성)

  • Jung, Da-Woon;Oh, Seung-Min;Park, Dong-Wha
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.701-706
    • /
    • 2008
  • Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by $N_2$ used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

Impedance-Based Characterization of 2-Dimenisonal Conduction Transports in the LaAlO3/SrxCa1-xTiO3/SrTiO3 systems

  • Choi, Yoo-Jin;Park, Da-Hee;Kim, Eui-Hyun;Park, Chan-Rok;Kwon, Kyeong-Woo;Moon, Seon-Young;Baek, Seung-Hyub;Kim, Jin-Sang;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.171.2-171.2
    • /
    • 2016
  • The 2-dimensiona electron gas (2DEG) layers have opened tremendous interests in the heterooxide interfaces formed between two insulating materials, especially between LaAlO3 and $SrTiO_3$. The 2DEG layers exhibit extremely high mobility and carrier concentrations along with metallic transport phenomena unlike the constituent oxide materials, i.e., $LaAlO_3$ and $SrTiO_3$. The current work inserted artificially the interfacial layer, $Sr_xCa_{1-x}TiO_3$ between $LaAlO_3$ and $SrTiO_3$, with the aim to controlling the 2-dimensional transports. The insertion of the additional materials affect significantly their corresponding electrical transports. Such features have been probed using DC and AC-based characterizations. In particular, impedance spectroscopy was employed as an AC-based characterization tool. Frequency-dependent impedance spectroscopy have been widely applied to a number of electroceramic materials, such as varistors, MLCCs, solid electrolytes, etc. Impedance spectroscopy provides powerful information on the materials system: i) the simultaneous measurement of conductivity and dielectric constants, ii) systematic identification of electrical origins among bulk-, grain boundary-, and electrode-based responses, and iii) the numerical estimation on the uniformity of the electrical origins. Impedance spectroscopy was applied to the $LaAlO_3/Sr_xCa_{1-x}TiO_3/SrTiO_3$ system, in order to understand the 2-dimensional transports in terms of the interfacial design concepts. The 2-dimensional conduction behavior system is analyzed with special emphasis on the underlying mechanisms. Such approach is discussed towards rational optimization of the 2-dimensional nanoelectronic devices.

  • PDF

Electrical properties and degradation behavior of Tm2O3 doped barium titanate ceramics for MLCCs (Tm2O3가 첨가된 MLCC용 BaTiO3 유전체의 전기적 특성 및 열화거동)

  • Kim, Do-Wan;Kim, Jin-Seong;Hui, K.N.;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.278-282
    • /
    • 2010
  • The doping effect of thulium on electrical properties and degradation behavior in barium titanate ceramics ($BaTiO_3$) was investigated in terms of generations of core-shell structure and micro-chemical changes through highly accelerated degradation test. The dielectric specimens of pellet type and multi-layered sheets were prepared by using $BaTiO_3$ with undoped and doped with 1 mol% $Tm_2O_3$. The $BaTiO_3$ ceramics doped with 1 mol% $Tm_2O_3$ had 40% higher dielectric constant (${\varepsilon}$ = 2700) than that of the undoped $BaTiO_3$ specimen at curie temperature and met X7R specification. According to the result of highly accelerated degradation test conducted at $150^{\circ}C$, 70 V, and 24 hr, the oxygen diffusion was declined in dielectrics doped with 1 mol% $Tm_2O_3$. The $Tm^{3+}$ ion substituted selectively Ba site and Ti site and contributed to the generation of the core-shell structure. Oxygen vacancies occurred by substitution for Ti site could reduce excess oxygen that reacted to the Ni electrode.

Preparation of Core-Shell Structured BaTiO3 Powder Via Coating of Cr2O3 and Mn2O3 (Cr2O3 및 Mn2O3의 코팅에 의한 Core-Shell 구조의 BaTiO3 분말 제조)

  • Kwon, Byung-Soo;Lee, Hye-Un;Jang, Jung-Yoon;Lee, Sang-Kil;Chung, In Jae;Cho, Young-Sang;Park, Tae-Jin;Choi, Guang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.99-105
    • /
    • 2008
  • Core-shell structured $BaTiO_3$ powders were produced via nano-coating of $Cr_2O_3$ and $Mn_2O_3$ to barium titanate powder system for MLCCs. From preliminary experiments, the optimal solution reaction condition employing using $KMnO_4$, $K_2Cr_2O_4$ and sulfur was established. Not only powders of $Cr_2O_3$ and $Mn_2O_3$ were synthesized but also their coating on $BaTiO_3$ powders were peformed under the same reaction condition. The coating was carried out in two ways, one-step and two-step, and its results were characterized for comparison. Conclusively speaking, two oxide additives were coated onto the $BaTiO_3$ powder surface with high quality and excellent reaction yield even under mild condition, which indicates that the contents as well as the properties of additive shell layer can be precisely controlled with rather ease.