• Title/Summary/Keyword: MK801

Search Result 73, Processing Time 0.037 seconds

Cardiovascular Responses and Nitric Oxide Production in Cerebral Ischemic Rats

  • Shinl, Chang-Yell;Lee, Nam-In;Je, Hyun-Dong;Kim, Jeong-Soo;Sung, Ji-Hyun;Kim, Dong-Seok;Lee, Doo-Won;Bae, Ki-Lyong;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.697-703
    • /
    • 2002
  • We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of $Ca^{2+}$ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that $Ca^{2+}$ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.

Effects of Dextromethorphan on the Development of Tachyphylaxis to Sciatic Nerve Blockade Induced by 2-Chloroprocaine in the Rat (2-chloroprocaine에 의한 쥐좌골신경 차단시 발생한 급성내성에 대한 Dextromethorphan의 영향)

  • Park, Myong-Su;Lee, Kang-Chang;Kim, Tai-Yo
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.39-45
    • /
    • 1996
  • Tachyphylaxis to local anesthetics has shown to be promote longer interanalgesic intervals between injections. Previous study demonstrated thermal hyperalgesia accelerates development of tachyphylaxis to sciatic nerve blockade in rats, while MK-801 prevents development of tachyphylaxis. Dextromethorphan is one of NMDA receptor antagonist similar to MK-801. A hypothesis that dextromethorphan would prevent the development of tachyphylaxis was tested in this study. A catheter was surgically implanted along the sciatic nerve a in rat. After recovery from surgery, the animal received repeated injections of 3% 2-chloroprocaine followed by motor block testing with or without hot-plate testing at $56^{\circ}C$. In other experiments, dextromethorphan was administrered by intraperiotneal injection prior to an injection of local anesthetic therough the implanted catheter. Sensory and motor testing was then carried out. Rats injected with 2-chloroprocaine and subjected to hot-plate testing, developed tachyphylaxis to motor and sensory blockade. However, animals pretreated with dextromethorphan did not develop tachyphylaxis over series of three injections. Dextromethorphan seems to prevent development of tachyphylaxis to sciatic nerve blockade in this rat model. Dextromethorphan, one of N-Methyl-D-aspartate receptor antagonist, can be applied to prolong the effect of local anesthetic.

  • PDF

Kainate-induced Elevations of Intracellular $Ca^{2+}$ and Extracellular Glutamate are Partially Decreased by NMDA Receptor Antagonists in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shogo-Tokuyama;Patrick P.McCaslin
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.391-395
    • /
    • 1995
  • Several lines of evidence indicate that physiological activity of N-methyl-D-aspartate (NMDA) receptor was blocked by physiological concentration of $Mg^{2+}$ (1.2 mM). However, the activity of NMDA receptor may not be blocked totally with this concentration of $Mg^{2+}$ under elevated membrane potential by kainate. Here, we described the effect of $Mg^{2+}$ on NMDA receptor and how much of NMDA receptor functions could be activated by kainate. Effects of NMDA receptor antagonist on kainate-induced elevation of intracellualr $Ca^{2+}$ levels $([Ca^{2+}]_i)$ and extracellular glutamate level were examined in cultured rat cerebellar granule neurons. kainate-induced elevation of $([Ca^{2+}]_i)$ was not affected by physiological concentration of $Mg^{2+}$. Kainate-induced NMDA-induced elevation was blocked by the same concentration of $MG^{2+}$Kainate-induced elevation of [$([Ca^{2+}]_i)$ was decreased by 32% in the presence of NMDA antagonists, MK-801 and CPP (3-[2-carboxypiperazine-4-yl]propyl-1-phosphonic acid), in $Mg^{2+}$ free buffer. Kainate receptor-activated gluamate release was also decreased (30%) by MK-801 or CPP. These resuts show that certain extent of elevations of intracellular $Ca^{2+}$ and extracellular glutamate by kainate is due to coativation of NMDA receptors.

  • PDF

Effects of Pre-treatment with NMDA Antagonist for Tactile Allodynia in Nerve Ligation Induced Neuropathic Pain Rat (신경결찰에 의한 신경병증성 통증 쥐에서 NMDA Antagonist 전처치가 이질통 발생에 미치는 영향)

  • Lee, Youn-Woo;Yoon, Duck-Mi;Lee, Jong-Seok;Ahn, Eun-Kyoung;Lee, Young-Sook;Kim, Jong-Rae
    • The Korean Journal of Pain
    • /
    • v.9 no.2
    • /
    • pp.311-317
    • /
    • 1996
  • Background: Following peripheral nerve injury, rats will show a tactile allodynia and hyperalgesia. But the mechanism of allodynia is still obscure. Previous studies have shown this allodynia was reversed by intrathecal alpha-2 agonists and NMDA antagonists, but not by morphine. In formalin test, either the pretreatment of NMDA antagonist or morphine prevents the hyperalgesia. The present studies, using rats rendered allodynic by ligation of the left L5 and L6 nerves, aimed to investigate the effects of pretreatment of MK-801 and morphine on the development of tactile allodynia. Methods and Material: Male Sprague-Dawley rats (100~150g) were anesthetized with halothane, the left L5 and L6 spinal nerves were ligated tightly by 6-0 black silk. For sham operation muscle dissection was performed but the spinal nerve was not ligated. For pretreatment of drugs, MK-801 (NMDA antagonist; 0.3 mg/kg). CNQX (non-NMDA) antagonist; 0.3 mg/kg), morphine (1 mg/kg) or saline (placebo) was administered subcutaneously 30 minutes before operation. A second dose was administered subcutaneously 24 hours after operation and further doses were given daily for 2 days further. The volume of injection was 5 ml/kg. To assess the mechanical allodynia, paw withdrawal thresholds of ipsilateral limb were determined using 8 von Frey hairs. Results: Within 2 days saline, CNQX or morphine injected rats developed tactile allodynia (paw withdrawal threshold was about 2g), and persisted for over 2 weeks. Pretreatment of MK-801 delayed the development of tactile allodynia for 3 days comparing to that of saline injected rat. Conclusion: NMDA receptor in the central nerve system plays an important role in the development of tactile allodynia induced by peripheral nerve injury. But the mechanism may be different from hyperalgesia developed in formalin test.

  • PDF

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

Capsaicin Induces Acute Spinal Analgesia and Changes in the Spinal Norepinephrine Level (Capsaicin에 의한 척수 수준에서의 급성 진통효과와 Norepinephrine의 변화)

  • Park, Hyoung-SuP;Park, Kyung-Pyo
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 1993
  • Central analgesic effect of capsaicin was assessed by the tail flick reflex (TFR) test, using male Sprague-Dawley rats under anesthesia with pentobarbital sodium (induction with 40 mg/kg and maintenance with $4{\sim}8\;mg/kg/hr$). Level of norepinephrine in the spinal cord was also measured. Capsaicin, $35{\sim}150\;{\mu}g$, was injected intrathecally, and the TFR latency was measured before, 10, 30, and 60 minutes after the drug administration. TFR latency was increased 100% or more immediately by intrathecal capsaicin, from 2.9 seconds to the maximum of 7.0 seconds at 10 minute after the drug; P<0.01. The increase in TFR latency was maintained during the course of experiment of 2 hours. Concomitant reduction of NE content in the spinal cord was observed; from 16 ng/mg protein to 7 ng/mg protein. On the other hand, subcutaneous injection of capsaicin of 50 mg/kg did not change the TFR latency although the NE content reduced similarly to the case of intrathecal injection. Pretreatment of the animal with 0.5 mg/kg of MK-801 reversed the increase of TFR latency and NE reduction induced by intrathecal capsaicin. These results suggest that capsaicin causes analgesia at the spinal cord level by activating the excitatory amino acid-NE-dorsal horn interneurons axis of the descending inhibitory pain modulation pathway.

  • PDF

Modulation in NMDA and $GABA_A$ Receptor Expression after Cerebroventricular Infusion of Ginsenosides

  • Oh Seikwan;Kim Hack-Seang
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.96-112
    • /
    • 2002
  • In the present study, we have investigated the effects of centrally administered ginsenoside Rc or Rgl on the modulation of NMDA receptor and $GABA_A$ receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using $[^3H]MK-801$ binding, and $GABA_A$ receptor bindings were analyzed by using $[^3H]muscimol\;and\;[^3H]flunitrazepam$ in rat brain slices. Rats were infused with ginsenoside Rc or Rg1 ($10\;{\mu}g/10{\mu}l/hr$, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML), The levels of $[^3H]MK-801$ binding were highly decreased in part of cortex and cingulated by ginsenoside Rc and Rgl. The levels of $[^3H]muscimol$ binding were strongly elevated in almost all regions of frontal cortex by the treatment of ginseoside Rc but decreased by ginsenoside Rg 1. However, the $[^3H]flunitrazepam$ binding was not modulated by ginsenoside Rc or ginsenoside Rgl infusion. These results suggest that prolonged infusion of ginsenoside could differentially modulate $[^3H]MK-801\;and\;[^3H]muscimol$ binding in a region-specific manner. Also, we investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rgl-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CAI area of hippocampus in Rgl-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rgl-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.

  • PDF

Endothelin-1이 유발하는 stereotyped behavior과 arterial blood pressure 상승에 NMDA receptor와 NO의 관련성

  • 류정수;방준석;허인회
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.92-92
    • /
    • 1997
  • Stereotaxic apparatus를 이용하여 흰쥐의 두개골을 천공하여 periaqueductal gray matter에 정확히 cannula를 삽입하여 1일 이상의 방치후 여기로 약물을 투여하여 일군의 동물들은 행동의 변화를 관찰하고, 일군의 동물들은 경동맥에서의 혈압과 심박수의 변화를 관찰한다. 결과: ET-1에 의해 유발된 barrel-rolling은 NMDA receptor-selective antagonist인 MK-801에 의해 유의성있게 억제되었으며, NOS antagonist인 L-NAME과 NO scavenger인 Hemoglobin에 의해서도 유의성 있게 억제되었다.

  • PDF

Changes in the glutamatergic nervous system following AF64A injection into lateral ventricle in rats

  • Young Ma;Yi, Eun-Young;Park, Woo-Joung;Lim, Dong-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.210-210
    • /
    • 1996
  • Changs in the glutamatergic nervous system following AF64A injection into lateral ventricle were studied in rats. Rats were treated with the infusion of AF64A (3mM) into lateral ventricle At a week after the infusion of AF64A into lateral ventricle, rats were sacrified and each brain resions was dissected ; striatum, hippocampus and frontal cortex. At these resions, total glutamate and other amino acids levels. [$^3$H]Mk801 binding sites and glutamine synthetase activity were measured using HPLC-ECD, ligand binding assay and enzyme activity assay, respectively. The levels of total glutamate were decreased in striatum, hippocampus and frontal cortex Also, the levels of total glycine and taurine were decreased in all examined regions. Furthermore, the levels of total aspartate and GABA were decreased in both hippocampus and frontal cortex but these didn't alter in striatum. Additionally, the levels of total glutamine were decreased in both striatum and frontal cortex. The u\numbers of [$^3$H]MK801 binding sites were differently dffected in each brain resions ; the decrease in striatum, the increase in frontal cortex and no change in hippocampus Glutamine synthetase activity in striatum was significantly decreased. But, that in both hippocampus and frontal cortex didn't alter These results suggest that changes in the glutamatergic nervous system in three regions are induced by following AF64A injection into lateral ventricle in rats.

  • PDF