• 제목/요약/키워드: MIT-BIH arrhythmia

검색결과 86건 처리시간 0.033초

1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계 (Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks)

  • 김성우;김인주;신승철
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.37-43
    • /
    • 2020
  • 최근 심전도 (ECG) 신호를 사용하여 심장병을 진단하는 많은 연구가 이루어지고 있다. 이러한 심전도 신호는 비정상적인 심장 상태를 나타내는 부정맥을 모니터링하고 진단하는 데 유용하게 쓰인다. 본 논문에서는 1차원 합성곱 신경망을 사용하여 ECG 신호에 대하여 부정맥을 분류하는 시스템을 제안한다. 제안하는 신경망 알고리즘은 부정맥 신호의 특징을 세밀하게 추출하도록 4개의 합성곱 계층으로 구성하고 매개변수를 최적화하도록 설계되었다. MIT-BIH 부정맥 데이터베이스에 대해 학습한 신경망은 시뮬레이션을 통해 99% 이상의 정확도의 분류 성능을 가진다는 것을 보여준다. 비교적 합성곱 커널의 개수가 많을수록 ECG 신호의 특성을 더 잘 나타내기 때문에 좋은 성능을 나타내는 것으로 분석되었다. 또한 제안된 신경망을 활용한 실제 시스템을 구현하여 실시간으로 부정맥을 분류하는 결과를 검증하였다.

적응형 문턱치와 QRS피크 변화에 따른 P파 검출 알고리즘 (P Wave Detection Algorithm through Adaptive Threshold and QRS Peak Variability)

  • 조익성;김주만;이완직;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제20권8호
    • /
    • pp.1587-1595
    • /
    • 2016
  • P파는 심장의 전기적, 생리적 특성을 나타내는 파라미터로써 심방성 부정맥 진단에 있어 매우 중요하다. 하지만 R파에 비해 신호의 크기가 작고 그 형태가 다양하여 검출에 많은 어려움이 있다. P 파를 검출하기 위한 기존 연구방법으로는 주파수 분석과 비선형 접근방법 등이 제안되어 왔지만 방실 차단과 같은 전도 이상이나 심방성 부정맥의 경우에는 검출 정확도가 낮아진다. 이는 심장 상태에 따라 다양한 모양의 P파의 패턴이 존재하기 때문이다. 본 연구에서는 QRS 피크 변화에 따른 P파의 패턴을 분류하고 적응형 문턱치를 이용하여 P파를 검출하는 방법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 Q, R, S를 검출한다. 이후 피크 변화에 따른 P파의 3가지 패턴을 분류하고 적응형 윈도우와 문턱치를 통해 P파를 검출하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 한 P파의 평균 검출율은 92.60%의 성능을 나타내었다.

웨이블릿 변수화의 최적화를 통한 적응형 조기심실수축 검출 알고리즘 (An Adaptive Classification Algorithm of Premature Ventricular Beat With Optimization of Wavelet Parameterization)

  • 김진권;강대훈;이명호
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권4호
    • /
    • pp.294-305
    • /
    • 2009
  • The bio signals essentially have different characteristics in each person. And the main purpose of automatic diagnosis algorithm based on bio signals focuses on discriminating differences of abnormal state from personal differences. In this paper, we propose automatic ECG diagnosis algorithm which discriminates normal heart beats from premature ventricular contraction using optimization of wavelet parameterization to solve that problem. The proposed algorithm optimizes wavelet parameter to let energy of signal be concentrated on specific scale band. We can reduce the personal differences and consequently highlight the differences coming from arrhythmia via this process. The proposed algorithm using ELM as a classifier show high discrimination performance between normal beat and PVC. From the experimental results on MIT-BIH arrhythmia database the performances of the proposed algorithm are 98.1% in accuracy, 93.0% in sensitivity, 96.4% in positive predictivity, and 0.8% in false positive rate. This results are similar or higher then results of existing researches in spite of small human intervention.

PVC Classification Algorithm Through Efficient R Wave Detection

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • 센서학회지
    • /
    • 제22권5호
    • /
    • pp.338-345
    • /
    • 2013
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and the prevention of possible life threatening cardiac diseases. Most methods for detecting arrhythmia require pp interval, or the diversity of P wave morphology, but they are difficult to detect the p wave signal because of various noise types. Thus, it is necessary to use noise-free R wave. So, the new approach for the detection of PVC is presented based on the rhythm analysis and the beat matching in this paper. For this purpose, we removed baseline wandering of low frequency band and made summed signals that are composed of two high frequency bands including the frequency component of QRS complex using the wavelet filter. And then we designed R wave detection algorithm using the adaptive threshold and window through RR interval. Also, we developed algorithm to classify PVC using RR interval. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate average detection rate of 99.76%, sensitivity of 99.30% and specificity of 98.66%; accuracy respectively for R wave and PVC detection.

심전도 R-R 간격 정보를 이용한 심실조기수축 부정맥 검출 (Assessment of PVC (Premature Ventricular Contraction) Arrhythmia by R-R Interval in ECG)

  • 윤태호;이선주;김경섭;이정환
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.15-21
    • /
    • 2009
  • 심실조기수축 (PVC: Premature Ventricular Contraction)은 성인에게서 가장 흔하게 발생되는 심장 부정맥 증상 중의 하나이다. 심실조기수축 부정맥이 자주 발현되는 사람의 경우 관상 동맥 질환, 고혈압 등의 심혈관계 질환이 진행되고 있을 가능성이 많고, 심실빈맥이나 심실세동으로 전이되는 경우에는 심정지 등을 유발하여 사망에 이르기 때문에 지속적으로 관찰이 필요한 증상이다. 따라서 본 연구에서는 심전도 신호의 R-R 간격 정보를 이용하여 심실조기수축 부정맥 증상을 실시간으로 검출할 수 있는 알고리즘을 구현하였으며, 또한 심전도 신호의 R-R 간격 정보와 R-peak의 진위성 여부를 판단하여 심실조기수축 및 심실조기수축 파형이 다발적으로 발생되는 PVC-RUNs를 효율적으로 검출할 수 있는 부정맥 진단 알고리즘을 제안하고자 하였다.

  • PDF

Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석 (Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability)

  • 조익성;권혁숭;김주만;김선종;김병철
    • 한국정보통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.192-200
    • /
    • 2015
  • 부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 특성을 가진 ECG 데이터를 분석하여 최소한의 특징점을 추출함으로써 그에 따른 패턴을 분류하는 것이 필요하다. 본 연구에서는 이상 심전도와 같은 다양한 신호를 고려하여 Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석기법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 Q, R, S의 진폭과 위상변화에 따른 8개의 특징점을 추출하였다. 이후 각 특징점의 피크 변화와 형태에 따른 ECG 신호를 분석하고 부정맥 유형에 따른 9가지 패턴을 정의하였다. 제안한 방법의 우수성을 입증하기 위해 43개의 MIT-BIH 레코드를 대상으로 Normal, PVC, PAC, LBBB, RBBB, Paced Beat의 각 패턴을 분석하였다. 실험결과 9가지 패턴에 대한 검출율은 93.72%로 우수하게 나타났다.

R 피크 검출 정확도를 개선한 홀터 심전도 모니터의 개발 (Development of Holter ECG Monitor with Improved ECG R-peak Detection Accuracy)

  • 최정현;강민호;박준호;권기구;배태욱;박준모
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.62-69
    • /
    • 2022
  • 의료현장에서는 최근 디지털 헬스케어의 중요성이 대두되면서, 다양한 형태의 생체신호 측정 관련 연구가 활발히 진행되고 있다. 생체신호 중 가장 중요한 신호로 심전도를 들 수 있으며, 특히 부정맥 환자에 있어 심전도 신호의 연속 모니터링은 매우 중요하다. 부정맥은 동결절(sinus node), 동빈맥(sinus tachycardia), 심방조기수축(atrial premature beat, APB), 심실세동 (ventricular fibrillation) 등으로 그 발병원에 따른 형태가 다양하며, 발병 이후의 예후가 좋지 않으므로 일상 중 연속 모니터링은 부정맥의 조기 진단과 치료방향 설정에서 매우 중요하다. 부정맥 환자의 심전도 신호는 매우 불안정하며, 부정맥을 자동 검출하기 위한 주요 특징점으로 작용하는 정확한 R-peak 포인트의 검출이 어렵다. 본 연구에서는 연속 측정하는 홀터 심전도 모니터링 기기와 분석용 소프트웨어를 개발하였으며, 부정맥 데이터베이스를 통해 심전도 신호의 R-peak 효용성을 확인하였다. 향후 연구에서는 다양한 발병원인으로 인한 부정맥의 형태적 구분 및 예측을 위한 알고리즘과 임상 데이터에 근거한 유효성 검증에 관한 추가 연구가 필요하다.

규칙기반 리듬 분류에 의한 심전도 신호의 비정상 검출 (Abnormality Detection of ECG Signal by Rule-based Rhythm Classification)

  • 류춘하;김성완;김세윤;김태훈;최병재;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.405-413
    • /
    • 2012
  • 심전도 신호의 신뢰성 있는 진단을 위해서는 높은 분류 정확도와 함께 낮은 오분류 성능이 중요하며, 특히 비정상을 정상으로 진단하는 것은 심검자에게 치명적인 문제로 귀결될 수 있다. 본 논문에서는 임상 진단 기준을 반영하는 규칙기반 분류 알고리즘을 이용하여 비정상 리듬을 검출 및 분류하는 방법을 제안한다. 규칙기반 분류는 리듬 구간의 특징에 대한 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, 이 때 규칙 베이스는 임상 및 내과 분야의 심전도 전문 임상 자료에 기반한 본 논문의 기준표에 따라 구성된다. MIT-BIH 부정맥 데이터베이스를 이용한 제안 방법의 실험을 통하여 정상동조율, 박동조율, 및 다양한 비정상 리듬에 대한 리듬 유형의 분류가 가능함을 확인하였으며, 특히 비정상 리듬 검출 측면에서는 오분류가 전혀 발생되지 않는 결과를 보였다.

차감 동작 기법 기반의 효율적인 R파 검출 (Efficient R Wave Detection based on Subtractive Operation Method)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.945-952
    • /
    • 2013
  • QRS 영역 중 R파는 ECG 신호 중 가장 큰 대표 신호라 할 수 있으며, 이 점을 기준으로 다양한 특징점을 검출하기 때문에 R파의 검출성능을 높이기 위해 많은 노력을 기울여 왔다. 하지만 R파 검출은 여러 종류의 잡음성분들로 인하여 이를 분석하는데 어려움을 준다. 또한 QRS 영역의 진폭과 유사한 T파나 P파를 R파로 오인함으로써 검출의 어려움이 발생한다. ECG 신호처리는 하드웨어 및 소프트웨어 자원에 대한 효율성을 고려해야 하며, 소형화 및 저 전력을 위해 단순해야 한다. 즉, 최소한의 연산량으로 정확한 R파를 검출함으로써 다양한 부정맥을 분류할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 차감 동작 기법(Subtractive Operation Method, 이하 SOM) 기반의 심전도 신호의 R파 검출 방법을 제안한다. 이를 위해 형태 연산을 통한 전처리 과정과 경험적 문턱값과 차감신호를 통해 R파를 검출하였으며, 검출의 효율성을 위하여 RR 간격을 이용한 동적 역탐색 기법을 적용하였다. 제안한 알고리즘의 R파 검출 성능을 평가하기 위해서 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파는 평균 99.41%의 검출결과가 나타났다.

효율적인 QRS 검출과 프로파일링 기법을 통한 심실조기수축(PVC) 분류 (Efficient QRS Detection and PVC(Premature Ventricular Contraction) Classification based on Profiling Method)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.705-711
    • /
    • 2013
  • 심전도 신호의 QRS 영역은 심장의 질환을 판단하는 중요한 자료로 쓰이는데, 여러 종류의 잡음으로 인해 이를 분석하는데 어려움을 준다. 또한 일반인들의 건강상태를 지속적으로 모니터링 하는 헬스케어 시스템에서는 신호의 실시간 처리가 필요하다. 그리고 생체신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단 규칙에 따라 진단을 수행함으로써 성능하락이 나타날 수밖에 없다. 이러한 문제점을 해결하기 위해서는 최소한의 연산량으로 QRS를 검출하고 환자의 특성에 맞게 부정맥을 분류할 수 있는 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 형태연산을 통한 효율적인 QRS 검출과 개인별 정상신호 분류를 위해 해쉬 함수를 적용하여 프로파일링 하였으며, 검출된 QRS 폭과 RR 간격을 이용하여 심실조기수축(PVC)을 분류하는 알고리즘을 개발하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 통해 기존 방법과 부정맥 분류 성능을 비교하였다. 성능평가 결과, R파는 평균 99.77%, 정상 신호 분류에 대한 에러율은 0.65%, PVC는 각각 93.29%로 기존 방법에 비해 약 5% 우수하게 나타났다.