Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.
Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.
International Journal of Fuzzy Logic and Intelligent Systems
/
제11권3호
/
pp.204-210
/
2011
This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.
Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).
This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.
심전도 신호의 QRS 검출은 심장의 상태를 확인 할 수 있는 가장 보편적인 방법이다. 하지만 측정할 때 발생되는 여러 종류의 잡음성분들로 인하여 이를 분석하는데 어려움을 준다. 가장 큰 문제를 야기하는 부분이 기저선 변동 잡음인데 전극을 부착한 부위의 근육수축과 호흡의 리듬에 따라서 발생하게 된다. 특히 일반인들의 건강상태를 지속적으로 모니터링 해야 하는 헬스케어 시스템에서는 이를 위한 심전도 신호의 실시간 처리가 필요하다. 즉, 최소한의 연산량으로 대상 환자의 특징을 파악하여 정확한 QRS를 검출할 수 있는 적합한 알고리즘의 설계가 필요하다. 따라서 본 연구에서는 효율적인 QRS 검출을 위한 형태 연산기반의 기저선 잡음제거 기법을 제안한다. 이를 위해 형태 연산을 통한 전처리 과정과 적응형 윈도우를 통해 QRS를 검출하였다. 제안한 알고리즘의 성능을 평가하기 위해 일반적으로 심전도 기저선 변동 잡음 제거 시 사용되는 기존 필터와의 신호의 왜곡도를 비교 평가하였다. 또한 MIT-BIH 부정맥 데이터베이스를 사용하여 R파 검출 결과를 확인하였다. 실험 결과로부터 형태 연산을 이용한 방법이 적은 연산량으로 충분한 잡음제거율을 얻을 수 있다는 것을 확인할 수 있었다.
지금까지 심방세동을 검출하는 방법은 P파의 형태, 시간 주파수 영역 분석법이 주를 이루었다. 하지만 P파는 잡음의 영향을 많이 받는 환경에서는 검출의 정확도가 떨어지며, 시간 주파수 영역 분석법은 RR 간격에 따라 변화하는 불규칙적 리듬에 관한 정보를 정확하게 얻지 못하는 단점이 있다. 본 연구에서는, P파의 형태는 고려하지 않고, 불규칙 RR 간격 리듬의 비선형적 특성 분석을 통한 심방세동 검출 알고리즘을 제안한다. 이를 위해 불규칙 RR 간격 리듬을 다양성, 무작위성, 복잡성으로 각각 정의하고 제곱평균제곱근(RMSSD), 전환점비(TPR), 표본 엔트로비(SpEn)의 3가지 비선형적 특성 분석을 통하여 심방세동을 분류하였다. 제안된 알고리즘의 검출 성능을 평가하기 위해 3가지 통계치의 최적값을 설정하고 MIT-BIH 심방세동 데이터베이스와 부정맥 데이터베이스를 이용하여 실험하였다. 성능 평가 결과, MIT-BIH 심방세동 데이터베이스에 대해서는 민감도(sensitivity:94.5%), 특이도(specificity:96.2%)를 각각 나타내었으며, 부정맥 데이터베이스에 대해서는 민감도(89.8%), 특이도(89.62%)를 각각 나타내었다.
R파 검출에 사용되는 여러 심전도 데이터베이스는 샘플링 주파수의 차이로 인해 서로 다른 환경에 적용할 경우 성능에 변화가 많아 알고리즘의 신뢰도를 보장하기 어렵다. 본 연구에서는 심전도신호의 샘플링 주파수에 따른 R파 검출의 최적 문턱치 설정 방법을 제안한다. 이를 위해 미분 기반의 이동평균과 제곱합수를 이용하여 전처리를 수행하였다. 이후 샘플링 주파수에 따라 피크 문턱치에 대한 최적 값을 검출하였다. 문턱치 단계는 신호의 변화와 이전 검출된 피크 값에 따라 문턱치를 변경함으로써 최적의 성능을 나타내는 값을 선정하는 과정으로 실험하였다. 제안한 방법의 우수성을 입증하기 위해 부정맥 데이터베이스 레코드를 대상으로 실험한 결과 MIT-BIH 샘플링 주파수 360Hz에 대한 미분 구간($N_d$), 윈도우 사이즈(N), 문턱 계수($p_{th}$)의 최적 값은 각각 7, 8, 6.6일 때 R파 검출율은 99.758%의 우수한 성능을 나타내었다.
With the recent development of hardware and software technology, interest in the development of wearable devices is increasing. In particular, wearable devices require algorithms suitable for low-power and low-capacity embedded devices. Among them, there is an increasing demand for a signal compression algorithm that reduces communication overhead, in order to increase the efficiency of storage and transmission of electrocardiogram (ECG) signals requiring long-time measurement. Because normal beats occupy most of the signal with similar shapes, a high rate of signal compression is possible if normal beats are represented by a template. In this paper, we propose an algorithm for determining the normal beat template using the template cluster and Pearson similarity. Also, the template is expressed effectively as a few vertices through linear approximation algorithm. In experiment of Datum 234 of MIT-BIH arrhythmia database (MIT-BIH ADB) provided by Physionet, a compression ratio was 33.44:1, and an average distribution of root mean square error (RMSE) was 1.55%.
많은 임상적 상태에서 ECG신호는 진단을 목적으로 기록된다. 또한 정확한 임상해석을 위해 데이터는 높은 해상도와 샘플링율이 필요하다. 따라서 본 논문에서는 다중웨이브렛 기저함수를 이용한 심전도 압축구조를 설계하여 기존의 단일 웨이브렛 기저함수와 이산 코사인 변환과 비교 분석하였다. 실험의 객관성을 위해 MIT-BIH 데이터 베이스중에서 분해도가 11[bit]이고 샘플링 주파수가 360[Hz]인 부정맥 데이터를 이용하여 모의 실험하였다. 성능평가는 재생오차에 대한 압축율로 평가하였다. 결과적으로 다중웨이브렛 기저함수를 이용한 심전도 압축구조에서 DCT보다 2배 이상의 좋은 성능평가 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.