• Title/Summary/Keyword: MIMO-orthogonal frequency division multiplexing (MIMO-OFDM)

Search Result 113, Processing Time 0.024 seconds

Performance of MIMO-OFDM systems combing Pre-FFT beamformer with power control algorithm (전력제어 기법과 결합된 Pre-FFT 빔형성기를 가진 MIMO-OFDM 시스템의 성능)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.24-31
    • /
    • 2009
  • In this paper, the new technique combing power control with Pre-FFT beamforming is proposed for MIMO(multi-input multi-output)-OFDM(orthogonal frequency division multiplexing) system. As combining the proposed power control with beamforming, we can iteratively control the transmittingpower and update the weight of beamformer together. And then, the beam is formed toward the desired direction and SNIR of each subcarrier is converged to target SNIR. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by combining power allocation algorithm with MIMO-OFDM system using Pre-FFT beamformer

Channel Estimation for MIMO System by using Orthogonal Code with Comb Type Pilot (COMB 방식의 파일럿 구조와 직교부호를 이용한 MIMO 시스템 채널추정)

  • Park, Do-Hyun;Kang, Eun-Su;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.226-236
    • /
    • 2011
  • In this paper, we propose the channel estimation for the space time coded-orthogonal frequency division multiplexing (ST-OFDM) muti-input multi-output (MIMO) system with comb type pilot arrangements. In the conventional method, specially constructed pilots are inserted in the OFDM symbols at all transmit antennas separately. The proposed algorithm multiplies the orthogonal code to be transmitted OFDM symbols to estimate channels at the receiver. This algorithm can estimate a long channel delay with high accuracy. It is proved by computer simulations.

A Channel Estimation Method for MIMO-OFDM Systems (MIMO-OFDM 시스템에서의 채널 추정 기법)

  • Kim, Gyeong-Seok;Ahn, Do-Rang;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.277-279
    • /
    • 2004
  • In this paper, we propose an channel estimation method for Multi-Input Multi-Output-Orthogonal frequency Division Multiplexing (MIMO-OFDM). The proposed method estimates uniquely all channel frequency responses needed in space-frequency block coded OFDM systems using "comb-type" pilot symbols. To reduce the computational complexity of the proposed method, least square(LS) and linear minimum mean square error(LMMSE) are used in the frequency-domain. The performance of the proposed approach is evaluated by computer simulation for rayleigh fading channel.

  • PDF

OFDM Transmission Method Based on the Beam-Space MIMO System (빔공간 MIMO 시스템에 기반한 OFDM 전송방법)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • Beamspace Multiple-Input Multiple Output(MIMO) system can transmit multiple data by using Electronically Steerable Parasitic Array Radiator(ESPAR) antenna which has single Radio Frequency(RF)-chain. Beamspace MIMO system can reduce complexity of the system and size of antenna in comparison with the conventional MIMO system because of characteristic of ESPAR antenna using the single antenna and the RF-chain. Heretofore, only the research of transmitting single-carrier has been conducted by the use of beamspace MIMO system. Therefore, in this paper, we propose beamspace MIMO system based on Orthogonal Frequency Division Multiplexing(OFDM) for transmitting the multi-carrier and analysis the performance of this system. We find a proper reactance value which has good performance because proposed system changes the performance by the reactance values of parasitic elements. and we confirm that performance of the proposed system is similar to conventional MIMO system based on OFDM.

Iterative Decoding for LDPC Coded MIMO-OFDM Systems with SFBC Encoding (주파수공간블록부호화를 적용한 MIMO-OFDM 시스템을 위한 반복복호 기법)

  • Sohn Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.402-406
    • /
    • 2005
  • A multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system using low-density parity-check (LDPC) code and iterative decoding is presented. The iterative decoding is performed by combining the zero-forcing technique and LDPC decoding through the use of the 'turbo principle.' The proposed system is shown to be effective with high order modulation and outperforms the space frequency block code (SFBC) method with iterative decoding.

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Channel Estimation with Orthogonal Code in MIMO System (MIMO 환경에서 직교코드를 이용한 채널추정)

  • Park, Do-Hyun;Kang, Eun-Su;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.927-940
    • /
    • 2011
  • In this paper, we improve a time-domain channel estimation algorithm with multi-input multi-output (MIMO) systems for the next-generation digital television (DTV). The conventional algorithm use orthogonal codes for separating channels from the time-domain orthogonal frequency division multiplexing (OFDM) symbols. However. it has the disadvantage of reduced data-rate because of many pilots. The improved algorithm shows better performance than the conventional one even with reduced number of pilots. The improved algorithm is evaluated by computer simulations.

Iterative Channel Estimation Algorithm for Anti-jamming in MIMO Communication Systems (MIMO 통신 시스템에서 항재밍을 위한 반복적인 채널 추정 알고리즘)

  • Jung, Jun Hee;Hwang, Yu Min;Cha, Kyung Hyun;Lee, Jae Seang;Shin, Yoan;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.32-36
    • /
    • 2016
  • In wireless communication systems, jamming attack is a critical threat. Especially, reactive jamming can jam when the sender and receiver are communicating, which can maximize the attack efficiency of jamming. In this paper, we use the property of multi-input multi-output (MIMO) technology to achieve jamming resilient orthogonal frequency-division multiplexing (OFDM) communications. In particular, we use MIMO interference cancellation to remove the jamming signals strategically. We first investigate the reactive jamming attack model and their impacts on the MIMO-OFDM systems. We then present an iterative channel estimation algorithm that exploits MIMO interference cancellation. Our simulations show various anti-jamming methods and demonstrate the efficiency of our proposed algorithm under the reactive jamming attack.

Adaptive P-SLM Method with New Phase Sequence for PAPR Reduction of MIMO-OFDM Systems (MIMO-OFDM 시스템의 PAPR 감소를 위한 새로운 위상시퀀스의 적응형 P-SLM기법)

  • Yoo, Eun-Ji;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.149-156
    • /
    • 2011
  • MIMO-OFDM(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) has been spotlighted as a solution of high-quality service for next generation's wireless communications. However, like OFDM, one of main problems of MIMO-OFDM is the high PAPR(Peak-to-Average Power Ratio). In this paper, an adaptive P-SLM(Partitioned-SeLetive Mapping) based on new phase sequence is proposed to reduce PAPR. The proposed method has better performance and lower complexity than conventional method due to the use of periodic multiplication and adaptability by fixed critical PAPR value. Simulation results show that the proposed method has better performance and lower complexity than conventional method.

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF