• Title/Summary/Keyword: MIMO spatial multiplexing

Search Result 108, Processing Time 0.026 seconds

Power and Offset Allocation for Spatial-Multiplexing MIMO System with Rate Adaptation for Optical Wireless Channels (다중 입출력 무선 광채널에서의 공간 다중화 기법의 적응적 전송을 위한 광출력과 오프셋 할당 기법)

  • Park, Ki-Hong;Ko, Young-Chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.8-18
    • /
    • 2011
  • Visible light communication (VLC) using optical sources which can be simultaneously utilized for illumination and communication is currently an attractive option for wireless personal area network. Improving the data rate in optical wireless communication system is challenging due to the limited bandwidth of the optical sources. In this paper, we design the singular value decomposition (SVD)-based multiplexing multi-input multi-output (MIMO) system to support two data streams in optical wireless channels. In order to improve the spectral efficiency, the rate adaptation using multi-level pulse amplitude modulation (PAM) is applied according to the channel condition and we propose the method to allocate the optical power, the offset and the size of modulation scheme theoretically under the constraints of the nonnegativity of the modulated signals, the aggregate optical power and the bit error rate (BER) requirement. The simulation results show that the proposed allocation method gives the better performance than the method to allocate the optical power equally for each data stream.

Performance Analysis of Space-Time Coded Spatial Multiplexing Systems with Rate Allocation and Power Control (전송률 할당 및 전력 제어를 갖는 시공간 블록 부호화한 공간 다중화 시스템의 성능 분석)

  • Na, Seung-Gun;Hwang, Hyeon-Chyeol;Kim, Seok-Ho;Choi, Sun-Ho;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.568-577
    • /
    • 2005
  • In this paper, we propose the transmission scheme for the space-time block coded spatial multiplexing systems that have adaptive rate and power allocation per each transmit antenna through the use of feedback information related to channel state. Simulation results show that the adaptive power and rate transmission scheme gain more than 4.5 dB over conventional equal-power and rate transmission scheme.

Bandwidth-Efficient Transmission Protocol for Cooperative MIMO: Design and Analysis (분산 다중 안테나 기반의 상호 협력 통신을 위한 전송 프로토콜의 설계 및 분석)

  • Ryu, Hyun-Seok;Kang, Chung-G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.418-425
    • /
    • 2008
  • In this paper, we propose two different types of cooperative transmission protocols, referred to as spatial multiplexing with receive diversity (SMRD), that are bandwidth-efficient. We show that the BER performance can be significantly improved with a proper design of SMRD protocol under the AF (Amplify-and-Forward) and the DF (Decode-and-Forward) modes of relaying, when there is no interference among all symbols transmitted in the same time slot. BER analysis and our simulation result show that the proposed transmission protocol achieves a significant gain over no-cooperation (direct transmission) without any bandwidth expansion.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Outage Performance of a Multi-Cell MIMO-OFDM Broadcast Transmission Method (다중-셀 다중 안테나 직교 주파수분할 다중화 기반 브로드캐스트 전송 방식의 아웃티지 성능)

  • Park, Jae-Cheol;Kim, Yun-Hee;Song, Ick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.720-726
    • /
    • 2008
  • In this paper, we propose a multi-cell cooperation method for broadcast packet data services in the orthogonal frequency division multiplexing (OFDM)-based cellular system with multiple transmit antennas. In the proposed method, to transmit two streams of spatially demultiplexed or transmit diversity coded symbols over a number of transmit antennas, we divide a coded packet into multiple subparts to which different cell groups and antenna pairs are assigned. The proposed method enhances the diversity order by transforming the channel frequency responses of two symbol streams in each subpart of the broadcast packet. The increase in diversity of the proposed method is shown with the outage probability under various configurations.

Low Complexity MIMO System Using Minimum Distance Searching Algorithm (MDSA) with Linear Receiver (최소거리탐지 알고리즘(MDSA)을 이용한 ML 탐지 MIMO 시스템 연구)

  • Kwon, Oh-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.462-467
    • /
    • 2007
  • This paper proposes Minimum Distance Searching Algorithm (MDSA) which reduces the computational complexity (CC) of the ML, the kind of Spatial Multiplexing (SM) MIMO system. The MDSA searchs candidate symbols with a starting symbol, which is called reference bits. We used the linear receiver of MIMO techniques to find a starting symbol. The MDSA searchs the shortest path to a transmitted symbol using reference bits and Minimum Distance(MD) concept. The CC of MDSA is reduced to the 0.21% to the ML as the transmit antennas is 4 in 16QAM. The simulation result shows the BER of MDSA is nearly same to the BER of ML as the transmit antennas is 2 and the receive antennas is 3 in 16QAM and slightly degraded to the BER of ML as the transmit antennas is 4 and the receive antennas is 6 in QPSK.

Opportunistic Channel State Information Feedback for Eigen based Scheduling in Multiuser MIMO Systems (다중 사용자 다중 입출력 시스템에서 고유값 기반 스케줄링을 위한 선택적 채널 정보 피드백 기법)

  • Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.6-12
    • /
    • 2009
  • In this paper, we propose the opportunistic channel state information feedback scheme for eigen based scheduling in multiuser MIMO systems. According to 3GPP SMC channel model, the system capacity of MU-MIMO systems is severly degraded, since the antennas are highly correlated in urban macro cell. Although the eigen based scheduling scheme mitigates the adverse effect of the antenna correlation, it achieves only small amount of the multiuser diversity gain. Since the opportunistic channel state information scheme can achieve sufficient multiuser diversity gain, the system capacity of MU-MIMO systems can be improved. The system capacity improvement is verified by the computer simulation results.

Performance Analysis of MlMO-OFDMA System Combined with Adaptive Beamforming (다중 입출력과 적응형 빔형성 기술 결합기법을 적용한 직교주파수분할 다중 접속시스템의 성능 분석)

  • Chung, Jae-Ho;Choi, Seung-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2C
    • /
    • pp.86-92
    • /
    • 2011
  • This paper details the downlink performance analysis of an multiple antennas system that combines adaptive beamforming and spatial multiplexing (SM) Multiple Input Multiple Output (MIMO). The combination of MIMO signal processing with adaptive beamforming is applied to WiBro, the South Korean Orthogonal Frequency Division Multiple Access (OFDMA) system that follows the IEEE 802.16e standard. Performance analysis is based on the results of experiments and simulations obtained from a fixed-point simulation testbed. Simulations demonstrate that the MIMO Beamforming OFDMA system improves the required signal to noise ratio (SNR) over the conventional MIMO OFDMA system by 3 dB (QPSK) / 2.5 dB (16-QAM) for the frame error rate (FER) of 1% in the WiBro signal environments. From the implementation of the fixed-point simulation testbed and its experimental results, we verify the feasibility of the MIMO Beamforming technology for realizing a practical WiBro base station.

Performance comparison of MIMO-VLC systems according to the change of an emission angle (발광 각도 변화에 따른 MIMO-VLC 시스템의 성능 비교)

  • Lee, Byung-Jin;Kim, Yong-Won;Kim, Young-Keun;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • Visible light communication is a communication method using an LED having a high-speed ON / OFF rate data to be transmitted, it is used as a wireless high speed data transmission. VLC system evolves, the problem of basic research is intended to improve performance and ensure reliability of the communication. The nature of the visible light communication, communication is performed only in the reach of the light, which indicates a big difference by the emission angle of the light. Therefore, in this paper, in the case of indoor environments generally, with the attributes of the multiple LED is equipped, was applied to a MIMO (Multiple Input Multiple Output) communication system. and analyzed SNR performance and total power can be obtained on the reception side by changing the emission angle of the transmitter. As a result of the simulation was run against this, it was confirmed that there is a significant impact on the performance of BER and SNR performance by the emission angle of the transmitter.

On Adaptive LDPC Coded MIMO-OFDM with MQAM on Fading Channels (페이딩 채널에서 적응 LDPC 부호화 MIMO-OFDM의 성능 분석)

  • Kim, Jin-Woo;Joh, Kyung-Hyun;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.43 no.2
    • /
    • pp.80-86
    • /
    • 2006
  • The wireless communication based on LDPC and adaptive spatial-subcarrier coded modulation using MQAM for orthogonal frequency division multiplexing (OFDM) wireless transmission by using instantaneous channel state information and employing multiple antennas at both the transmitter and the receiver. Adaptive coded modulation is a promising idea for bandwidth-efficient transmission on time-varying, narrowband wireless channels. On power limited Additive White Gaussian Noise (AWGN) channels, low density parity check (LDPC) codes are a class of error control codes which have demonstrated impressive error correcting qualities, under some conditions performing even better than turbo codes. The paper demonstrates OFDM with LDPC and adaptive modulation applied to Multiple-Input Multiple-Output (MIMO) system. An optimization algorithm to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge is used. The experimental results are shown the potential of our proposed system.