• Title/Summary/Keyword: MIMO spatial multiplexing

Search Result 108, Processing Time 0.027 seconds

Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems (공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘)

  • Mohaisen, Manar;An, Hong-Sun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.460-468
    • /
    • 2009
  • Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

Design of New Closed-Loop Spatial Multiplexing System Using Linear Precoder (선형 선부호기를 이용한 새로운 폐루프 공간 다중화 시스템 설계)

  • Chae, Chang-Hyeon;Choi, Dae-Won;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.44-49
    • /
    • 2008
  • Recently, a so called orthogonal spatial multiplexing(OSM) scheme was presented which allows simple maximum likelihood decoding at the receiver with single phase feedback In this paper, by serially concatenating this scheme by a linear precoder, a new closed-loop SM scheme is proposed for two transmit arid two receive antennas. By computer simulation results, we show that the proposed scheme outperforms the conventional SM and OSM. For the proposed code, we also propose a new simple decoding algorithm which leads to a greatly reduced decoding complexity compared with the ML receiver without any loss of error performance.

Analysis of Single-RF MIMO Receiver with Beam-Switching Antenna

  • Gwak, Donghyuk;Sohn, Illsoo;Lee, Seung Hwan
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.647-656
    • /
    • 2015
  • This paper proposes a single-RF MIMO receiver that adopts a beam-switching antenna (BSA) instead of a conventional array antenna. The beauty of the proposed single-RF MIMO receiver with BSA is that it can be deployed in a very small physical space while achieving a full spatial multiplexing gain. Our analysis has revealed that the use of a BSA inevitably results in the spectrum spreading effect at the RF output, which in turn causes an SNR decrease and adjacent channel interference (ACI). Two novel receiver techniques are proposed to mitigate the issues of redundant sub-band suppression and ACI avoidance. Numerical analysis results verify the performance improvement from the proposed receiver techniques.

Adaptive Combined Scalable Video Coding over MIMO-OFDM Systems using Partial Channel State Information

  • Rantelobo, Kalvein;Wirawan, Wirawan;Hendrantoro, Gamantyo;Affandi, Achmad;Zhao, Hua-An
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3200-3219
    • /
    • 2013
  • This paper proposes an adaptive combined scalable video coding (CSVC) system for video transmission over MIMO-OFDM (Multiple-Input Multiple-Output-Orthogonal Frequency Division Multiplexing) broadband wireless communication systems. The scalable combination method of CSVC adaptively combines the medium grain scalable (MGS), the coarse grain scalable (CGS) and the scalable spatial modes with the limited feedback partially from channel state information (CSI) of MIMO-OFDM systems. The objective is to improve the average of peak signal-to-noise ratio (PSNR) and bit error rate (BER) of the received video stream by exploiting partial CSI of video sources and channel condition. Experimental results show that the delivered quality using the proposed adaptive CSVC over MIMO-OFDM system performs better than those proposed previously in the literature.

Analysis on the Performance Degradation of MIMO-OFDM Receiver and Hybrid Interference Cancellation with Low Complexity for the Performance Improvement Under High-Mobility Condition (MIMO-OFDM 수신기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법)

  • Kang, Seung-Won;Kim, Kyoo-Hyun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.95-112
    • /
    • 2007
  • Spatial Multiplexing techniques, which is a kind of Multiple antenna techniques, provide high data transmission rate by transmitting independent data at different transmit antenna with the same spectral resource. OFDM (Orthogonal Frequency Division Multiplexing) is applied to MIMO (Multiple-Input Multiple-Output) system to combat ISI (Inter-Symbol Interference) and frequency selective fading channel, which degrade MIMO system performance. But, orthogonality between subcarriers of OFDM can't be guaranteed under high-mobility condition. As a result, severe performance degradation due to ICI is induced. In this paper, both ICI and CAI (Co-Antenna Interference) which occurs due to correlation between multiple antennas, and performance degradation due to both ICI and CAI are analyzed. In addition to the proposed CIR (Channel Impulse Response) estimation method for avoiding loss in data transmission rate, HIC (Hybrid Interference Cancellation) approach for guaranteeing QoS of MIMO-OFDM receiver is proposed. We observe the results on analytical performance degradation due to both ICI & CAI are coincide with the simulation results and performance improvement due to HIC are also verified by simulation under SCM-E Sub-urban Macro MIMO channel.

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly

OFDM MIMO radar waveform design for targets identification

  • Bai, Ting;Zheng, Nae;Chen, Song
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.592-603
    • /
    • 2018
  • In order to obtain better target identification performance, an efficient waveform design method with high range resolution and low sidelobe level for orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar is proposed in this paper. First, the wideband CP-based OFDM signal is transmitted on each antenna to guarantee large bandwidth and high range resolution. Next, a complex orthogonal design (COD) is utilized to achieve code domain orthogonality among antennas, so that the spatial diversity can be obtained in MIMO radar, and only the range sidelobe on the first antenna needs suppressing. Furthermore, sidelobe suppression is expressed as an optimization problem. The integrated sidelobe level (ISL) is adopted to construct the objective function, which is solved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The numerical results demonstrate the superiority in performance (high resolution, strict orthogonality, and low sidelobe level) of the proposed method compared to existing algorithms.

Open-Loop Precoding for Spatial Multiplexing Systems in Correlated Channels (상관 채널에서의 공간다중화 기법을 위한 개루프 프리코딩 기법)

  • Jang, Jungyup;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.58-60
    • /
    • 2015
  • In this letter, an open-loop precoding is proposed to enhance the performance of SM in transmit correlated MIMO channels. The proposed method is derived by observing the effect of feedback error on the minimum distance precoder, and can mitigate the performance degradation without any feedback information.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

Spatial Multiplexing Using Open-Loop Precoding in Maritime Communication Environment with Channel Correlation and LOS (채널 상관 및 직접파가 존재하는 해상 통신 환경에서 개루프 프리코딩 기반의 공간다중화 전송 기법)

  • Jang, Jungyup;Lee, Seong Ro;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1397-1404
    • /
    • 2015
  • Recently, high data rate transmission is required in maritime communication. In this paper, we consider multiple input multiple output (MIMO) spatial multiplexing (SM). However, the performance of SM is severly degraded due to spatial channel correlation and line-of-sight (LOS) component. In the maritime communication, the MIMO channel correlation and LOS are critical due to the lack of scatteres around the transmitter and/or the receiver. When the feedback of channel information is available, precoding can enhance the error performance by exploiting the channel information. However, it is difficult to derive closed-form solution considering both the correlation and LOS. In this paper, we present open-loop precoding-based spatial multiplexing transmission method by showing that the effect of performance for the correlation and LOS. It is shown that the open-loop precoding can mitigate the performance degradation due to the LOS as well as the correlation. Consequently, we expect that the proposed open-loop precoding can be adopted to the maritime communication system.