• Title/Summary/Keyword: MIMO precoding

Search Result 117, Processing Time 0.022 seconds

A MIMO LTE Precoding Codebook Based on Fast Diagonal Weighted Matrices (고속 대각 하중 행렬을 이용한 MIMO LTE 프리코딩 코드북)

  • Park, Ju-Yong;Peng, Bu Shi;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.14-26
    • /
    • 2012
  • In this paper, a fast diagonal-weighted Jacket matrices (DWJMs) is proposed to have the orthogonal architecture. We develop the successive DWJM to reduce the computational load while factorizing the large-order DWJMs into the low-order sparse matrices with the fast algorithms. The proposed DWJM is then applied to the precoding multiple-input and multiple output (MIMO) wireless communications because of its diagonal-weighted framework with element-wise inverse characteristics. Based on the properties of the DWJM, the DWJM can be used as alternative open loop cyclic delay diversity (CDD) precoding, which has recently become part of the cellular communications systems. Performance of the DWJM-based precoding system is verified for orthogonal space-time block code (OSTBC) MIMO LTE systems.

Low Complexity Hybrid Precoding in Millimeter Wave Massive MIMO Systems

  • Cheng, Tongtong;He, Yigang;Wu, Yuting;Ning, Shuguang;Sui, Yongbo;Huang, Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1330-1350
    • /
    • 2022
  • As a preprocessing operation of transmitter antennas, the hybrid precoding is restricted by the limited computing resources of the transmitter. Therefore, this paper proposes a novel hybrid precoding that guarantees the communication efficiency with low complexity and a fast computational speed. First, the analog and digital precoding matrix is derived from the maximum eigenvectors of the channel matrix in the sub-connected architecture to maximize the communication rate. Second, the extended power iteration (EPI) is utilized to obtain the maximum eigenvalues and their eigenvectors of the channel matrix, which reduces the computational complexity caused by the singular value decomposition (SVD). Third, the Aitken acceleration method is utilized to further improve the convergence rate of the EPI algorithm. Finally, the hybrid precoding based on the EPI method and the Aitken acceleration algorithm is evaluated in millimeter-wave (mmWave) massive multiple-input and multiple-output (MIMO) systems. The experimental results show that the proposed method can reduce the computational complexity with the high performance in mmWave massive MIMO systems. The method has the wide application prospect in future wireless communication systems.

Interpolation-based Precoding Approximation Algorithm for Low Complexity in Multiuser MIMO-OFDM Systems (다중 사용자 MIMO-OFDM 시스템에서 계산양 감소를 위한 선형 보간법 기반 프리코딩 근사화 기법)

  • Lim, Dong-Ho;Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1027-1037
    • /
    • 2010
  • In this paper, we propose the linear interpolation-based BD (Block Diagonalization) precoding approximation algorithm for low complexity in downlink multiuser MIMO-OFDM (Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing) systems. In the case of applying the general BD precoding algorithm to multiuser MIMO-OFDM systems, the computational complexity increases in proportional to the number of subcarriers. The proposed interpolation-based BD precoding approximation algorithm can be achieved similar SER performance with general BD algorithm and can decrease the computational complexity. It is proved that proposed algorithm can achieve the significantly decreased computational complexity by computer simulation.

Open-Loop Precoding for Spatial Multiplexing Systems in Correlated Channels (상관 채널에서의 공간다중화 기법을 위한 개루프 프리코딩 기법)

  • Jang, Jungyup;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.58-60
    • /
    • 2015
  • In this letter, an open-loop precoding is proposed to enhance the performance of SM in transmit correlated MIMO channels. The proposed method is derived by observing the effect of feedback error on the minimum distance precoder, and can mitigate the performance degradation without any feedback information.

MIMO Precoding in 802.16e WiMAX

  • Li, Qinghua;Lin, Xintian Eddie;Zhang, Jianzhong (Charlie)
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • Multiple-input multiple-output (MIMO) transmit pre-coding/beamforming can significantly improve system spectral efficiency. However, several obstacles prevent precoding from wide deployment in early wireless networks: The significant feedback overhead, performance degradation due to feedback delay, and the large storage requirement at the mobile devices. In this paper, we propose a precoding method that addresses these issues. In this approach, only 3 or 6 bits feedback is needed to select a precoding matrix from a codebook. There are fifteen codebooks, each corresponding to a unique combination of antenna configuration (up to 4 antennas) and codebook size. Small codebooks are prestored and large codebooks are efficiently computed from the prestored codebook, modified Hochwald method and Householder reflection. Finally, the feedback delay is compensated by channel prediction. The scheme is validated by simulations and we have observed significant gains comparing to space-time coding and antenna selection. This solution was adopted as a part of the IEEE 802.16e specification in 2005.

Multi-Mode Precoding Scheme Based on Interference Channel in MIMO-Based Cognitive Radio Networks

  • Jung, Minchae;Hwang, Kyuho;Choi, Sooyong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.137-140
    • /
    • 2011
  • A precoding strategy is one of the representative interference management techniques in cognitive radio (CR) network which is a typical interference-limited environment. The interference minimization approach to precoding is an appropriate scheme to mitigate the interference efficiently while it may cause the capacity loss of the desired channel. The precoding scheme for the maximal capacity of the desired channel improves the capacity of the desired channel while it increases the interference power and finally causes the capacity loss of the interfered users. Therefore, we propose a precoding scheme which satisfies these two conflicting goals and manages the interference signal in such an interference-limited environment. The proposed scheme consists of two steps. First, the precoder nulls out the largest singular value of the interference channel to mitigate the dominant interference signal based on the interference minimization approach. Second, the transmitter calculates the sum capacities per mode and selects a mode to maximize the sum capacity. In the second step, each mode consists of the right singular vectors corresponding to the singular values except the largest singular value eliminated in the first step. Simulation results show that the proposed precoding scheme not only efficiently mitigate the interference signal, but also has the best performance in terms of the sum capacity in a MIMO-based CR network.

  • PDF

Performance Analysis of Massive MIMO Systems According to DoF (DoF에 따른 Massive MIMO 시스템의 성능 분석)

  • Kim, Yongok;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2145-2147
    • /
    • 2015
  • In this letter, we investigate the performance analysis of massive MIMO systems using MRT and ZF precodings according to the number of DoF. We analyze the ergodic received SINRs with MRT and ZF precodings as closed-forms over the number of DoF normalized by the number of antennas. In simulation results, we verify the analyzed results and observe that MRT precoding is better than ZF precoding in terms of the ergodic received SINR with a small number of DoF.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

An Adaptive Joint Precoding for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 적응적 결합 프리코딩)

  • Park, Ju Yong;Hanif, Mohammad Abu;Song, Sang Seob;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.3-11
    • /
    • 2014
  • Multiple antennas can provide huge capacity gains when the transmitter knows the channel state information (CSI). Precoding is a technique that exploits CSI at the transmitter side. In this paper, an adaptive precoding scheme is proposed, called a hybrid multiple-input multiple-output (MIMO) precoding (HMP). HMP is a combination of linear and nonlinear precoding. The number of transmit antennas less than or equal to four is as same as the conventional antenna selection scheme. Therefore, the HMP scheme uses more than four transmit antennas. The good channel means that the channels must be selected to maximize the channel capacity among the given channels, and the rest channels are called bad channel. In HMP scheme, we use the nonlinear precoding in the good channels and the linear precoding in the bad channels. The well-known Tomlinson-Harashima precoding (THP) is considered as nonlinear precoding. The system throughput and MSE (minimum square error) are shown for the performance of HMP scheme compared to the conventional schemes which are BD (block diagonalization), antenna selection and THP.

Efficient Link Adaptation Scheme using Precoding for LTE-Advanced Uplink MIMO (LTE-Advanced에서 프리코딩에 의한 효율적인 상향링크 적응 방식)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.159-167
    • /
    • 2011
  • LTE-Advanced system requires uplink multi-antenna transmission in order to achieve the peak spectral efficiency of 15bps/Hz. In this paper, the uplink MIMO system model for the LTE-Advanced is proposed and an efficient link adaptation shceme using precoding is considered providing error rate reduction and system capacity enhancement. In particular, the proposed scheme determines a transmission rank by selecting the optimal wideband precoding matrix, which is based on the derived signal-to-interference and noise ratio (SINR) for the minimum mean squared error (MMSE) receivers of $2{\times}4$ multiple input multiple output (MIMO). The proposed scheme is verified by simulation with a practical MIMO channel model. The simulation results of average block-error-rate(BLER) reflect that the gain due to the proposed rank adapted transmission over full-rank transmission is evident particularly in the case of lower modulation and coding scheme (MCS) and high mobility, which means the severe channel fading environment.