• Title/Summary/Keyword: MIMO interference cancellation

Search Result 69, Processing Time 0.024 seconds

Hybrid Transmitter Design for Massive MIMO Systems (대용량 MIMO 시스템을 위한 하이브리드 송신기 설계)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • In the next generation mobile communication systems, hybrid massive multiple-input multiple output (MIMO) can be used to highly improve an achievable rate without increasing the number of RF chains. Recently, successive-interference-cancellation (SIC) based hybrid precoder design scheme was proposed to reduce the complexity. However, since this scheme uses simple diagonal matrix for baseband precoding, it cannot solve an interference problem between the transmitted streams. Also, there is a limitation for improving the data rate because of the use of one phase shifter for analog precoding. To solve these problems, in this paper we propose a digital precoding based on the SVD of the effective channel and an analog precoding using two phase shifters. Through simulation, we show that the proposed scheme has better achievable rate and SINR performances than the conventional one.

Turbo Coded MIMO System with Adaptive Turbo Space- Time Processing for High-Speed Wireless Communications (고속 무선 통신을 위한 적응형 터보 시공간 처리를 갖는 터보 부호화된 다중 입출력 시스템)

  • 조동균;김상준;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.843-850
    • /
    • 2003
  • Turbo coding and turbo processing have been known as methods close to Shannon limit in the aspect of wireless MIMO communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but turbo coding has not been used for turbo processing because of the inherent decoding process delay. This paper proposes a turbo coded MIMO system with adaptive turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and a enhanced cyclic redundancy check (E-CRC) scheme as an efficient and simple priori stopping criterion. Simulation results show that the Turbo-PAST outperforms conventional system with 1.3dB and the proposed E-CRC scheme effectively reduces the amount of turbo processing iterations from the point of average number of iterations.

An Efficient Soft-Output MIMO Detection Method Based on a Multiple-Channel-Ordering Technique

  • Im, Tae-Ho;Park, In-Soo;Yoo, Hyun-Jong;Yu, Sung-Wook;Cho, Yong-Soo
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.661-669
    • /
    • 2011
  • In this paper, we propose an efficient soft-output signal detection method for spatially multiplexed multiple-input multiple-output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple-channel-ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13-${\mu}m$ CMOS technology for a $4{\times}4$ 16-QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.

Design of Low-Density Parity-Check Codes for Multi-Input Multi-Output Systems (Multi-Input Multi-Output System을 위한 Low-Density Parity-Check codes 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.161-162
    • /
    • 2008
  • In this paper we design an irregular low-density parity-check (LDPC) code for a multi-input multi-output (MIMO) system. The considered MIMO system is minimum mean square error soft-interference cancellation (MMSE-SIC) detector. The MMSE-SIC detector and the LDPC decoder exchange soft information and consist a turbo iterative detection and decoding receiver. Extrinsic information transfer (EXIT) charts are used to obtain the edge degree distribution of the irregular LDPC code which is optimized for the input-output transfer chart of the MMSE-SIC detector. It is shown that the performance of the designed LDPC code is much better than that of conventional LDPC code optimized for the AWGN channel.

  • PDF

Joint OSIC and Soft ML Decoding Scheme for Coded Layered Space-Time OFDM Systems

  • Lee, Hye-Jeong;Chung, Jae-Ho;Park, Se-Jun;Lee, Seong-Choon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.487-493
    • /
    • 2008
  • In this paper, we consider coded layered space-time architecture in MIMO-OFDM channels. Vertical Bell Lab Layered Space-Time(V-BLAST) scheme employing ordered successive interference cancellation(OSIC) algorithm provides very high spectral efficiency with low computational complexity. However, the error propagation is a major drawback constraining the overall performance of the V-BLAST system significantly. Based on this problem, we derive an improved detector using soft bit log-likelihood ratio(LLR) value. Simulation results show that the proposed detector outperforms the conventional V-BLAST scheme under spatially uncorrelated as well as correlated fading channels.

Performance Evaluation of a Cellular OFDM System with Heterogeneous MIMO Users (이질적인 MIMO 사용자들을 가진 셀룰러 OFDM 시스템의 성능 분석)

  • Oh Joon;Hwang Hyeon chyeol;Lim Jong kyoung;Kim Duk kyung;Kwak Kyung sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.296-303
    • /
    • 2005
  • In this paper, we evaluate system performance and propose signal separation and detection when a user with one antenna shares the co-channel together with a user with two space-time coded antennas. The proposed technique can identify co-channel users by an interference cancellation method and detect the signals by maximum likelihood method. Simulation results show that the shortcoming of the Minimum Mean-Squared Error technique which can be applied two users with the same number of antenna but can not applied for heterogeneous MIMO users with the different number of antennas. Also, we apply the proposed scheme to OFDM system and evaluate the system performance. By simulations, we identify that the performance of the proposed system is the same as that of the existing single antenna users and improves the performance of the two-antenna MIMO users.

H.264/AVC Video Quality Improvement by Improved Interference Cancellation Ordering in Multiple Antenna Systems (다중안테나 시스템의 향상된 간섭제거 순서화를 통한 H.264/AVC 비디오 품질향상)

  • Bak, SangHyun;Kim, Jaekwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.50-57
    • /
    • 2010
  • In this paper, we address H.264/AVC video transmission using multiple antennaed phycical layer. When multiple antennas are used, the signals from the other antennas are interferences from the perspective of a target antenna, resulting in lowered video quality. In an effort to improve the video quality, in this paper, we propose a novel detection ordering scheme. We conduct computer simulations to show the efficacy of the proposed scheme.

  • PDF

Scheduling Algorithm for Multiuser MIMO-OFDM System (MMSE-SIC 기반 상향링크 다중 사용자 MIMO-OFDM 시스템에서 공정한 스케줄링 기법)

  • Lee, Pan-Hyung;Lee, Jae-Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.91-94
    • /
    • 2008
  • 본 논문에서는 준 정적(quasi-static) 레일레이 페이딩(Rayleigh fading) 채널에서 상향링크 다중 사용자 MIMO-OFDM 시스템을 위한 최소평균제곱오차-순차간섭제거(MMSE-SIC: Minimum mean square error-successive interference cancellation) 수신기에 대해 연구한다. 송신 안테나가 하나인 사용자와 수신 안테나가 다수인 기지국에서 MMSE-SIC 수신기를 기반으로 신호를 검출하는 시스템에서는 하나의 부대역 내에서 동시에 전송 가능한 사용자의 수가 기지국에서의 수신안테나 수보다 작아야 하는 제한 조건을 가지고 있다. 따라서 사용자간 공정성을 보장하고 시스템의 효율성을 높이기 위해 낮은 복잡도를 가지는 비례 공정(Proportional fair) 스케줄링 알고리즘을 제안한다. 제안된 비례 공정 스케줄링 알고리즘에서는 부대역 내에서 다중 사용자 채널 행렬을 기반으로 동시에 전송하는 사용자들의 집합을 찾는다. 평균 채널 이득이 사용자마다 다른 환경에서의 모의실험을 통해 제안된 비례 공정 스케줄링 기법의 성능을 알아본다. 제안된 비례 공정 스케줄링 기법은 기존의 공정성을 기반으로 하는 스케줄링 알고리즘보다 더 큰 일반 비례 공정(General proportional fair) 기준과 더 높은 셀 수율(Cell throughput)을 가지는 것을 보이고 있다.

  • PDF

Turbo Perallel Space-Time Processing System with LDPC Code in MIMO Channel for High-Speed Wireless Communications (MIMO 채널에서 고속 무선 통신을 위한 LDPC 부호를 갖는 터보 병렬 시공간 처리 시스템)

  • 조동균;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.923-929
    • /
    • 2003
  • Turbo processing have been known as methods close to Shannon limit in the aspect of wireless multi-input multi-output (MIMO) communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but LDPC coding has not been used for turbo processing because of the inherent decoding process delay. This paper suggests a LDPC coded MIMO system with turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and proposes a average soft-output syndrome (ASS) check scheme at low signal to noise ratio (SNR) for the Turbo-PAST system to decide the reliability of decoded frame. Simulation results show that the suggested system outperforms conventional system and the proposed ASS scheme effectively reduces the amount of turbo processing iterations without performance degradation from the point of average number of iterations.

An LDC-based MU-MIMO System with Pre-coding for Interference Cancellation and Robust Reception (간섭 제거와 수신 성능 향상을 위한 전처리기법을 적용한 LDC기반의 다중 사용자 다중 입출력 시스템)

  • Park, Myung Chul;Jo, Bong-Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.17-25
    • /
    • 2013
  • In this paper, a coding algorithm is proposed for multi-user multi-input multi-output (MU-MIMO) systems to improve the reception performance in fading conditions without reducing the bandwidth efficiency. The space division multiple access (SDMA) scheme that is one of the commonly used for MU-MIMO systems is vulnerable to the fading. The space time block code (STBC) scheme that is used to overcome the fading has a disadvantage of reduced throughput. The proposed MU-MIMO system first encodes transmitted symbols by linear dispersion code (LDC) which is less vulnerable to the fading and increases the throughput in proportional to the number of transmit antennas. Then, the LDC coded symbols are pre-coded by the result of singular value decomposition (SVD) of the estimated channel gain. We evaluate the performance of the proposed scheme compared with the conventional algorithms by computer simulations.