• Title/Summary/Keyword: MIMO detector

Search Result 68, Processing Time 0.02 seconds

A Simple Bit Allocation Scheme Based on Grouped Sub-Channels for V-BLAST OFDM Systems (V-BLAST OFDM 시스템을 위한 그룹화된 부채널 기반의 간단한 형태의 비트 할당 기법)

  • Park Dae-Jin;Yang Suck-Chel;Kim Jong-Won;Yoo Myung-Sik;Lee Won-Cheol;Shin Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7C
    • /
    • pp.680-690
    • /
    • 2006
  • In this paper, we present a bit allocation scheme based on grouped sub-channels for MIMO-OFDM (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) systems using V-BLAST (Vertical-Bell laboratories LAyered Space-Time) detector. A fully adaptive modulation and coding scheme may provide optimal performance in the MIMO-OFDM systems, however it requires excessive feedback information. Instead, SBA (Simplified Bit Allocation) scheme for reduction of feedback overhead, which applies the same modulation and coding to all the good sub-channels, may be considered. The proposed scheme in this paper named SBA-GS (Simplified Bit Allocation based on Grouped Sub-channels) groups sub-channels and assigns the same modulation and coding to the set of selected sub-channel groups. Simulation results show that the proposed scheme achieves comparable bit error rate performance of the conventional SBA scheme, while significantly reducing the feedback overhead in multipath channels with small delay spreads.

Limited Constellation List Sphere Decoding (격자 제한 리스트 스피어 디코딩)

  • Jeon, Myeong-Woon;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.1-3
    • /
    • 2010
  • 스피어 복호 알고리즘 (sphere decoding algorithm)은 다중 입출력 (MIMO) 통신 시스템에서 사용되는 복호기중 최대 우도 복호기 (Maximum Likelihood Detector)와 비슷한 BER(bit error rate)성능을 가지고 복잡도를 줄일수 있어서 최근 많이 연구되어 왔다. 이때 공간 다중화와 채널 부호의 연접시스템에서 연판정 정보(Soft output information) 를 스피어 복호 알고리즘을 통해 생성하기 위한 방법으로 리스트 스피어 복호 알고리즘 (List Sphere Decoding)이 알려져있다. 기존 리스트 스피어 디코딩 알고리즘은 리스트를 반지름을 업데이트 하지 않으므로 탐색시 복잡도가 매우 높다는것이 문제가 되므로, 차원별로 최적해의 가능성이 높은 격자 주변으로 검색을 제한하여 복잡도를 줄이는 알고리즘을 제안하고 성능과 복잡도를 실험한다.

  • PDF

Differencing Multiuser Detection Using Error Feedback Filter for MIMO DS-UWB System in Nakagami Fading Channel

  • Kong, Zhengmin;Fang, Yanjun;Zhang, Yuxuan;Peng, Shixin;Zhu, Guangxi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2601-2619
    • /
    • 2012
  • A differencing multiuser detection (MUD) method is proposed for multiple-input multiple-output (MIMO) direct sequence (DS) ultra-wideband (UWB) system to cope with the multiple access interference (MAI) and the computational efficiency in Nakagami fading channel. The method, which combines a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter (MIC DFE-EFF), a coefficient optimization algorithm (COA) and a differencing algorithm (DA), is termed as MIC DFE-EFF (COA) with DA for short. In the paper, the proposed MUD method is illuminated from the rudimental MIC DFE-EFF to the advanced MIC DFE-EFF (COA) with DA step by step. Firstly, the MIC DFE-EFF system performance is analyzed by minimum mean square error criterion. Secondly, the COA is investigated for optimization of each filter coefficient. Finally, the DA is introduced to reduce the computational complexity while sacrificing little performance. Simulations show a significant performance gain can be achieved by using the MIC DFE-EFF (COA) with DA detector. The proposed MIC DFE-EFF (COA) with DA improves both bit error rate performance and computational efficiency relative to DFE, DFE-EFF, parallel interference cancellation (PIC), MIC DFE-EFF and MIC DFE-EFF with DA, though it sacrifices little system performance, compared with MIC DFE-EFF (COA) without DA.

An Efficient K-BEST Lattice Decoding Algorithm Robust to Error Propagation for MIMO Systems (다중 송수신 안테나 시스템 기반에서 오차 전달을 고려한 효율적인 K-BEST 복호화 알고리듬)

  • Lee Sungho;Shin Myeongcheol;Seo Jeongtae;Lee Chungyong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.71-78
    • /
    • 2005
  • A K-Best algerian is known as optimal for implementing the maximum-likelihood detector (MLD), since it has a fixed maximum complexity compared with the sphere decoding or the maximum-likelihood decoding algorithm. However the computational complexity of the K-Best algrithm is still prohibitively high for practical applications when K is large enough. If small value of K is used, the maximum complexity decreases but error flooring at high SNR is caused by error propagation. In this paper, a K-reduction scheme, which reduces K according to each search level, is proposed to solve error propagation problems. Simulations showed that the proposed scheme provides the improved performance in the bit error rate and also reduces the average complexity compared with the conventional scheme.

A Signal Detection Method based on the Double Detection for Spatially Multiplexed MIMO Systems (다중 안테나 시스템을 위한 이중 검출 기반의 신호검출 기법)

  • Kim, Jung-Hyun;Bahng, Seung-Jae;Park, Youn-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6C
    • /
    • pp.634-641
    • /
    • 2009
  • The goal of OSIC-series detection methods is to approach the ML performance with feasible complexity. However, since they sometimes suffer from the empty vector problem, they can not achieve the soft-output ML performance or many candidate vectors are required to achieve the soft-output ML performance. In this paper, we propose the novel detection method, which can generate the reliable soft-outputs without suffering from empty vector problem. The proposed detector can approach the near soft-output ML performance as well as hard-output. Further, the complexity study shows that the proposed detection method has the lowest complexity compared to the other detectors having the near ML performance.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

Multi-Cell Transmit Diversity Scheme for OFDMA Systems (OFDMA 시스템을 위한 다중 셀 전송 다양성 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.721-727
    • /
    • 2012
  • Since a conventional multi-cell transmit diversity scheme depends on the feedback from the user for the channel gain information, its performance gets to severely degrade when the channel varies fast due to the high mobility of the user. Also, transmit power of the base station cannot be fully used in the conventional scheme because only one transmit antenna is used for data transmission. In this paper, we propose a multi-cell transmit diversity scheme appropriate for fast fading channel. In the proposed scheme, channel-independent precoding vector is applied over all transmit antennas and different precoding vectors are applied for neighboring subcarriers so that the received signal is avoided to experience deep fading over multiple neighboring subcarriers. Simulation results show that the proposed scheme has better detector output signal-to-noise ratio (SNR) and bit error rate (BER) performances than the conventional scheme.

A Closed Loop Orthogonal Space-Time Block Code for Maximal Channel Gains (최대의 채널 이득을 위한 폐루프 직교 시공간 블록 부호)

  • Lee, Ki-Ho;Kim, San-Hae;Shin, Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, we propose a new CL-OSTBC (Closed Loop Orthogonal Space-Time Block Code) scheme for four transmit antennas and compare the scheme with existing closed loop schemes on the performance of BER (Bit Error Rate). In the proposed scheme, a transmitter receives channel feedback information and combines modulated symbols by the symbol combiner, and transmits the symbols encoded by the space-time block encoder. As a result, the proposed scheme achieves full-rate and maximal channel gains by more efficient utilization of the channel feedback information. Moreover, the scheme can reduce computation complexity by using a linear detector. Simulation results on the BER performance show that the proposed CL-OSTBC scheme outperforms existing CL-OSTBC schemes.