• Title/Summary/Keyword: MIMO decoding

Search Result 124, Processing Time 0.015 seconds

8 Antenna Polar Switching Up-Down Relay Networks

  • Li, Jun;Lee, Moon-Ho;Yan, Yier;Peng, Bu Shi;Hwang, Gun-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.239-249
    • /
    • 2011
  • In this paper, we propose a reliable $8{\times}8$ up-down switching polar relay code based on 3GPP LTE standard, motivated by 3GPP LTE down link, which is 30 bps/Hz for $8{\times}8$ MIMO antennas, and by Arikan's channel polarization for the frequency selective fading (FSF) channels with the generator matrix $Q_8$. In this scheme, a polar encoder and OFDM modulator are implemented sequentially at both the source node and relay nodes, the time reversion and complex conjugation operations are separately implemented at each relay node, and the successive interference cancellation (SIC) decoder, together with the cyclic prefix (CP) removal, is performed at the destination node. Use of the scheme shows that decoding at the relay without any delay is not required, which results in a lower complexity. The numerical result shows that the system coded by polar codes has better performance than currently used designs.

Performance Analysis of Rotation-lock Differential Precoding Scheme (회전로크 구조의 차분 선부호화 기법의 성능 분석)

  • Kim, Young Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.9-16
    • /
    • 2013
  • Long term evolution (LTE) and LTE-Advanced (LTE-A) systems adopt closed-loop multiple-input multiple-output antenna techniques. Equal gain transmission which has equal gain property is the key factor in their codebook design. In this paper, a novel differential codebook structure which maintains the codebook design requirements of LTE or LTE-A systems. Especially, eight-phase shift keying (8-PSK) constellations are used as elements of codewords, which not only maintain equal gain property but also reduce the computation complexity of precoding and decoding function blocks. The equal gain property is very important to uplink because the performance of uplink is very sensitive to the peak-to-average power ratio (PAPR). Moreover, the operation of the proposed differential codebook is explained as a rotation-lock structure. As the results of computer simulations, the steady-state throughput performance of the proposed codebook shows at least 0.9dB of SNR better than those of the conventional LTE codebook with the same amount of feedback information.

The Layered Receiver Employing Whitening Process for Multiple Space-Time Codes (다중 시공간 부호를 위한 백색화 과정을 이용한 계층화 수신기)

  • Yim Eun Jeong;Kim Dong Ku
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.3 s.333
    • /
    • pp.15-18
    • /
    • 2005
  • Multiple space-time codes (M-STTC) is composed of several space-time codes. That provides high transmission rate as well as diversity and coding gain without bandwidth expansion. In this paper, the layered receiver structures employing whitening process for M-STTC is proposed. The proposed receiver is composed of the decoding order decision block and the layered detection block. The whitening process in the latter is utilized to maximize the receive diversity gain in the layered detection. The layered receiver employing whitening process has more diversity gain and advantage of the required number of receive antenna over the layered detection with MMSE nulling. The proposed scheme achieves a 5dB gain compared to the coded layered space-time processing at the FER of $10^{-2}$.

Design of New Differential Space-Time Modulation Using Real Precoder (실수 선부호기를 이용한 새로운 차등 시공간 변조 설계)

  • Kim, Hong-Jung;Kim, Jun-Ho;Kim, Cheol-Sung;Jung, Tae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.1-7
    • /
    • 2012
  • The conventional Zhu's differential space-time modulation(DSTM) based on quasi-orthogonal design adopted a complex precoder in order to allow an independent joint detection of two complex symbols without any channel informations at a receiver. In this paper, by simply replacing the complex precoder used in Zhu's DSTM with a real precoder, a new DSTM is presented for four transmit antennas. The real precoder enables the receiver to decode two real symbols pair separately, and thus the new DSTM has greatly reduced decoding complexity compared to the Zhu's DSTM. By computer simulation results, the proposed scheme is shown to exhibit almost identical or improved error performance compared to the existing DSTMs.