• Title/Summary/Keyword: MIMO SM

Search Result 51, Processing Time 0.019 seconds

Study on the applicability of MIMO Joint Decoding to Dual-Contact Satellite Systems (이중 교신 위성 시스템의 MIMO 공동 복조의 적용성에 대한 연구)

  • Park, Hong Won;Kim, Whan Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.10
    • /
    • pp.856-867
    • /
    • 2018
  • This paper presents the applicability of MIMO joint decoding to dual-contact satellite systems in which two LEO satellites using X-band frequency band are transmitting each image data to two ground station antennas, simultaneously. When two satellites are closely positioned within the looking angle of the two antennas, each satellite interferes with each other by the relative antenna gain corresponding to an offset angle and this might cause the performance degradation without interference mitigation. To mitigate the performance degradation, SM MIMO techniques for joint decoding are applied. Especially, the relative antenna gain of ground station depending on the angle difference between two satellites in ground station antenna plays an important role in modelling the dual-contact satellite systems. The condition number of MIMO channel including the antenna gain calculated from the mathematical gain pattern model was primarily analyzed. Simulation results showed that the SM MIMO techniques using detection schemes such as ZF-SIC, MMSE-SIC, and ML can be applicable to dual-contact satellite systems.

Spatial Modulation Transmission Scheme with Pre-coder for High Data Rates (대용량 데이터 전송을 위한 프리코더가 적용된 공간 변조기법)

  • Jo, Bong Gyun;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.11-20
    • /
    • 2014
  • In this paper, a novel transmission scheme is proposed to improve the data rates of spatial modulation (SM) which has low complexity and improves the spectral efficiency in correlated channel environments. The conventional SM scheme utilizes partial multiple antennas to transmit signal constellations and additional bits using antenna combinations. Therefore the channel capacity of SM is less than that of the conventional multiple input-multiple output (MIMO) scheme which uses all the available antennas. In this paper, an SM transmission scheme is proposed to improve the channel capacity using a tight frame pre-coder. The improvement in channel capacity of the SM scheme will be shown using computer simulations.

The introductory study for MIMO techniques over satellite systems

  • Kang, Yeon-Su;Kang, Kun-Suk;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2007
  • In this paper, the introductory study of the multi input multi output (MIMO) techniques for satellite communication systems is presented. Because of the advantage of wide coverage of satellite, it has been considered for broadcasting services and fill-in services. On the other hand, state of the art multi input multi output (MIMO) techniques such as space time code (STC) and spatial multiplexing (SM) makes the terrestrial system increase link performance and their coverage, and also increase the link throughput. For these regard, in order to satisfy the requirements of the next generation communications and coexists with terrestrial systems harmoniously, the studying about satellite MIMO techniques is necessary. In this paper, we introduce some system model and scenarios to apply MIMO technique to intermediate module repeater (IMR). The possibility of these techniques and technical requirements are also considered. Especially, Space time code is used to enhance IMRs coverage and increase the link performance, and space time multiplexing is utilized to multiplex satellite broadcasting signals with local broadcasting signal in IMR cell.

  • PDF

Low Power Symbol Detector for MIMO Communication Systems (MIMO 통신 시스템을 위한 저전력 심볼 검출기 설계 연구)

  • Hwang, You-Sun;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, an low power symbol detector is proposed for MIMO communication system with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing (SM) mode and spatial diversity (SD) mode for MIMO transmission technique, and shows the optimal maximum likelihood (ML) performance. Also, by sharing the hardware block and using the dedicated clock MIMO modes, the power of the proposed architecture is dramatically decreased. The proposed symbol detector was designed in hardware description language (HDL) and synthesized to logic gates using a $0.13-{\mu}m$ CMOS standard cell library. The power consumption was estimated by using Synopsys Power CompilerTM, which is reduced by maximum 85%, compared with the conventional architecture.

Taps Delayed Lines Architecture Based on Linear Transmit Zero-Forcing Approach for Ultra-Wide Band MIMO Communication Systems

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.652-656
    • /
    • 2011
  • In this paper, a transmitter-based multipath processing and inter-channel interference (ICI) cancellation scheme for a ultra-wideband (UWB) spatial multiplexing (SM) multiple input multiple output (MIMO) system is presented. It consists of taps delayed lines and zero-forcing (ZF) filters in the transmitter and correlators in the receiver. For a UWB SM MIMO system with N transmit antennas, M receive antennas, and Q resolvable multipath components, the BER performance of a linear transmit ZF scheme is analyzed in a log-normal fading channel and also compared with that of a receiver-based ICI rejection approach. It is found that when M ${\leq}$ N, the transmit ZF processing approach outperforms the ZF receiver while making the mobile units low-cost and low-power.

Reception Performance Analysis of SM Transmission Method in Correlated Channels (간섭 채널 상황에서의 SM 전송기법 성능분석)

  • Jo, Bong Gyun;Park, Myung-Chul;Han, Dong Seog
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.64-66
    • /
    • 2014
  • 본 논문에서는 케이블 TV 콘텐트를 대용량의 Wi-Fi 통신을 이용하여 전송하고, 집 안에 배치된 여러 가지의 수신기를 이용하여 콘텐트를 편하게 즐길 수 있는 서비스에 적합한 SM(spatial modulation) 전송기법의 수신 성능을 분석한다. 케이블 채널의 개수는 100가지가 넘으며 HD 이상의 화질을 가진다. 이러한 수십 개의 대용량 콘텐트를 무선으로 한정된 대역폭에 전송하기 위해서는 공간다중화 방식의 MIMO 기법이 필요하다. 그 중에서도 채널 간의 간섭이 많은 집 안 환경에 적합한 SM 전송기법은 수신 신호간의 간섭이 없으며 수신기가 간단하다는 장점을 가지고 있다. 또한 기존 SM의 낮은 대역효율을 증가시키기 위한 golden-SM 방식도 제안되었다. 그러나 실제 채널 환경에서의 기존 SM 전송기법들의 수신 성능은 비교된 것이 거의 없으므로 본 논문에서는 WiMAX(IEEE802.16a)에서 사용되고 있는 SUI 채널 모델을 고려하여 기존 SM 기법들의 수신 성능을 비교분석하였다.

  • PDF

New Spatial-Multiplexing Scheme for Erasure Fading Channels (Erasure 페이딩 채널 환경에서 새로운 공간 다중화 기법)

  • Kim, Ho-Jun;Kim, Jun-Ho;Jung, Tae-Jin;Kim, Cheol-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1045-1050
    • /
    • 2010
  • This paper proposes a new $2{\times}2$ spatial-multiplexing(SM) scheme which is constructed by serially concatenating an orthogonal precoder with a conventional SM. Compared to the conventional SM, the proposed scheme achieves improved performance under erasure fading channels without any performance loss under non-erasure fading channels. Particularly the performance gain is more larger as a correlation value between two receive antennas increases.

UEP Precoder Selection Technique for ML Detected SM MIMO Systems (ML검출 기반 공간다중화 MIMO 시스템의 UEP 프리코더 선정기술)

  • Park, Jaeyoung;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.747-749
    • /
    • 2017
  • In this paper, we propose a novel precoder selection technique for maximum-likelihood (ML) detected spatially multiplexed multiple-input multiple-output (MIMO) systems. Previous precoder selection techniques were designed without considering UEP, however the proposed technique is designed considering multi-antenna unequal error protection (UEP). Simulations demonstrate the improved multi-antenna UEP performance by the proposed technique.

Switching between Spatial Modulation and Quadrature Spatial Modulation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.