• Title/Summary/Keyword: MIMO Antennas

Search Result 382, Processing Time 0.028 seconds

Cooperative Transmission Scheme in OFDMA Uplink System (OFDMA 상향 시스템에서의 협동 전송 기법)

  • Yoon, Jae-Seon;Song, Hyoung-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.475-483
    • /
    • 2007
  • Recently, consumers demand high-quality wireless multimedia services via terrestrial and satellite network. And the interest for new services to sustain its successful commercial deployment grows tremendously. So, the MIMO schemes, such as STCs, MRC, has been used for realizing high reliability. However, MIMO schemes has some limitations. MIMO scheme needs more size, cost, and hardware complexity to employ additional antennas. Moreover, sufficient spaces between antennas are required to guarantee the independence of each channel and the devices which use multiple antennas should be enlarged. A cooperative transmission technique which is detect and forward type applying virtual MIMO with STBC matrix in DVB-RCT(Digital Video Broadcasting with Return Channel via Terrestrial) system based on OFDMA is also proposed.

Low Computational Algorithm for Estimating LLR in MIMO Channel (MIMO 채널에서 LLR 추정을 위한 저 계산량 알고리즘)

  • Park, Tae-Doo;Kim, Min-Hyuk;Kim, Chul-Sung;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2791-2797
    • /
    • 2010
  • In recent years, the goal of providing high speed wireless data services has generated a great amount of interest among the research community. Several researchers have shown that the capacity of the system, in the presence of flat Rayleigh fading, improves significantly with the use of combined MIMO and LDPC. To feed the soft values to LDPC decoder, the soft values must be calculated from multiple transmitter and receiver antennas in Rayleigh fading channel. It requires high computational complexity to get the soft symbols by increasing number of transmitter and receiver antennas. Therefore, this thesis proposed on effective algorithm for calculation of soft values from multiple antennas based on LLR. As result, This thesis shows that maximum 61% of computational complexity is reduced with a little loss of performance.

Optimal Numbers of Base Station Antennas and Users in Multiuser Massive MIMO Systems with Pilot Overhead (다중 사용자 Massive MIMO 시스템의 파일럿 오버헤드를 고려한 최적 기지국 안테나 수 및 사용자 수 분석)

  • Jung, Minchae;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1630-1638
    • /
    • 2016
  • In this paper, we consider multiuser massive multiple-input and multiple-output (MIMO) system where multiusers simultaneously utilize massive antennas of base station (BS). With a downlink frame structure considering pilot signals, we derive the ergodic cell capacity based on zero-forcing beamforming (ZFBF) technique. This paper proves that the ergodic cell capacity is concave function with respect to the numbers of BS antennas and users, and derives the optimum numbers of BS antennas and users maximizing ergodic cell capacity. From the simulation results, it is shown that the derived numbers of BS antennas and users has the optimum value for the maximum ergodic cell capacity, and the ergodic cell capacity with the derived optimum values increases with respect to the transmit SNR(Signal to Noise Ratio).

Low Complexity MIMO System Using Minimum Distance Searching Algorithm (MDSA) with Linear Receiver (최소거리탐지 알고리즘(MDSA)을 이용한 ML 탐지 MIMO 시스템 연구)

  • Kwon, Oh-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4C
    • /
    • pp.462-467
    • /
    • 2007
  • This paper proposes Minimum Distance Searching Algorithm (MDSA) which reduces the computational complexity (CC) of the ML, the kind of Spatial Multiplexing (SM) MIMO system. The MDSA searchs candidate symbols with a starting symbol, which is called reference bits. We used the linear receiver of MIMO techniques to find a starting symbol. The MDSA searchs the shortest path to a transmitted symbol using reference bits and Minimum Distance(MD) concept. The CC of MDSA is reduced to the 0.21% to the ML as the transmit antennas is 4 in 16QAM. The simulation result shows the BER of MDSA is nearly same to the BER of ML as the transmit antennas is 2 and the receive antennas is 3 in 16QAM and slightly degraded to the BER of ML as the transmit antennas is 4 and the receive antennas is 6 in QPSK.

A MIMO-OFDM System Based on Beamforming with Antenna Selection (안테나 선택을 이용한 Beamforming 기반의 MIMO-OFDM 시스템)

  • Park, Dae-Jin;Yang, Suck-Chel;Shin, Yo-An
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.19-20
    • /
    • 2006
  • In this paper, to reduce uplink feedback information for the beam weight and simultaneously maintaining the performance, we propose a MIMO-OFDM (Multi Input Multi Output-Orthogonal Frequency Division Multiplexing) system based on beamforming with antenna selection. In the proposed system, to perform the beamforming with more useful transmit antennas, the optimal combination of transmit antennas with maximum MRT (Maximum Ratio Transmission) beamforming gain is selected. Simulation results reveal that the proposed MIMO-OFDM system adopting the beamforming with antenna selection can reduce the feedback information for the beam weights as compared to the system using all the transmit antennas without serious degradation of system performance.

  • PDF

Capacity Bounds on the Ergodic Capacity of Distributed MIMO Systems over K Fading Channels

  • Li, XingWang;Wang, Junfeng;Li, Lihua;Cavalcante, Charles C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2992-3009
    • /
    • 2016
  • The performance of D-MIMO systems is not only affected by multipath fading but also from shadowing fading, as well as path loss. In this paper, we investigate the ergodic capacity of D-MIMO systems operating in non-correlated K fading (Rayleigh/Gamma) channels. With the aid of majorization and Minkowski theory, we derive analytical closed-form expressions of the upper and lower bounds on the ergodic capacity for D-MIMO systems over non-correlated K fading channels, which are quite general and applicable for arbitrary signal-to-noise ratio (SNR) and the number of transceiver antennas. To intuitively reveal the impacts of system and fading parameters on the ergodic capacity, we deduce asymptotic approximations in the high and low SNR regimes. Finally, we pursue the massive MIMO systems analysis for the lower bound and derive closed-form expressions when the number of antennas at BS grows large, and when the number of antennas at transceivers becomes large with a fixed and finite ratio. It is demonstrated that the proposed expressions on the ergodic capacity accurately match with the theoretical analysis.

Performance Analysis of a UWB System with MIMO Antennas in Indoor Channel Environments (실내 환경의 채널에서 MIMO 안테나로 구성된 UWB 시스템의 성능 분석)

  • Kim Su-Nam;Kang Dong-Wook;Kim Ki-Doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1564-1572
    • /
    • 2004
  • UWB(Ultra Wide Band) under standardization for WPAN has a restriction in transmitting power because of interference with existing systems. To overcome the restriction, in this paper, we construct the MIMO(Multi-input-Multi-Output) channel using multi-transmit/receiver antennas and analyze the performance of the proposed system. In addition, through numerical simulation, we obtain the interference property among these antennas and analyze the effect of an interference to the system. The proposed UWB system has a ML detector and the least square method will be used to cancel the multi-user interference and the inter symbol interference caused by multipath.

Wide and Dual-Band MIMO Antenna with Omnidirectional and Directional Radiation Patterns for Indoor Access Points

  • Yeom, Insu;Jung, Young Bae;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.20-30
    • /
    • 2019
  • A wide-band multiple-input multiple-output (MIMO) antenna with dual-band (2.4 and 5 GHz) operation is proposed for premium indoor access points (IAPs). Typically, an omni-directional pattern is used for dipole antennas and a directional radiation pattern is used for patch antennas. In this paper, both antenna types were used to compare their performance with that of the proposed $2{\times}2$ MIMO antenna. We simulated and measured the performance of the MIMO antenna, including the isolation, envelope correlation coefficient (ECC), mean effective gain (MEG) for the IAPs, and the throughput, in order to determine its communication quality. The performance of the antennas was analyzed according to the ECC and MEG. The proposed antenna has sufficient performance and excellent characteristics, making it suitable for IAPs. We analyzed the communication performance of wireless networks using the throughput data of a typical office environment. The network throughput of an 802.11n device was used for the comparison and was conducted according to the antenna type. The results showed that the values of the ECC, MEG, and the throughput have unique characteristics in terms of their directivity, antenna gains, isolation, etc. This paper also discusses the communication performance of various aspects of MIMO in multipath situations.

Sampling Time Offset and Compensation in TDM-Based Single RF Chain MIMO Receiver (TDM 수신 방식의 단일 RF 체인 MIMO 시스템에서 STO 특성 분석 및 보상)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.994-1000
    • /
    • 2013
  • Conventional MIMO system is required to a number of RF chains as much as a number of antennas. If the number of antennas increased then the number of RF chains increased. Therefore, it is difficult to apply conventional MIMO system to mobile terminals with limited power. In this paper, we propose a TDM(time division multiplexing)-based single RF chain MIMO system. The outcome shows that performance of the proposed system is similar to conventional MIMO system using multiple RF chains when STO is corrected by phase angle estimation and the synchronizing signal of received signal. Therefore, it is possible to implement the MIMO-OFDM system of low power and complexity through a single RF chain.

Identifying the Appropriate Position on the Ground Plane for MIMO Antennas Using Characteristic Mode Analysis

  • Won, Jusun;Jeon, Sinhyung;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.119-125
    • /
    • 2016
  • In this paper, a method for identifying the appropriate position on the ground plane for antennas is proposed based on the current correlation coefficient ($C^3$). This method explains that the mutual coupling between antennas when locating several antennas on the same ground plane is necessary. Given the current distribution on the ground plane induced by each antenna, easily estimating the coupling between antennas is possible. This paper also demonstrates that the proposed method can be used in the design of a multi-input multi-output system. The measured data are in good agreement with the simulation results.