• Title/Summary/Keyword: MIMO Antenna

Search Result 446, Processing Time 0.026 seconds

Adaptive Power Control Using Large Scale Antenna of the Massive MIMO System in the Mobile Communication

  • Ha, Chang-Bin;Jang, Byung-Jun;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3068-3078
    • /
    • 2015
  • Although the massive MIMO system supports a high throughput, it requires a lot of channel information for channel compensation. For the reduction of overhead, the massive MIMO system generally uses TDD as duplexing scheme. Therefore, the massive MIMO system is sensitive to rapidly changing fast fading in according to time. For the improvement of reduced SINR by fast fading, the adaptive power control is proposed. Unlike the conventional scheme, the proposed scheme considers mobility of device for adaptive power control. The simulation of the proposed scheme is performed with consideration for mobility of device. The result of the simulation shows that the proposed scheme improves SINR. Since SINR is decreased in according to the number of device in the network by unit of cell, each base station can accommodate more devices by the proposed scheme. Also, because the massive MIMO system with high SINR can use high order modulation scheme, it can support higher throughput.

A comparison study of the performance and computational complexity of various MIMO technoques in WiBro downlink system (WiBro 다운링크 환경에서 여러 가지 MIMO 기법의 성능 및 연산량에 대한 비교 연구)

  • Hong, Gyeong-Hua;Oh, Tae-Youl;Choi, Seung-Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.2
    • /
    • pp.49-55
    • /
    • 2008
  • Combining OFDMA with MIMO is the key technology for the 4G mobile communication. OFDMA can relieve inherent difficulties of high-speed transmission. MIMO technology can be largely categorized into two techniques: one is STC for diversity gain and the other is SM for high frequency efficiency. In this paper, we depict various MIMO techniques of two transmit antenna and compare the computational complexity of decoding process for the techniques. Then, we analysis the performance of the techniques in the WiBro downlink environment based on OFDMA. We perfer ML algorithm which is the optimum performance and ZF algorithm of least computational complexity for SM detection.

Performance Improvement of MIMO MC-CDMA system with multibeamforming

  • Kim, Chan Kyu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.76-83
    • /
    • 2019
  • In this paper, we propose the beamforming algorithm for the performance improvement of MIMO MC-CDMA system. The proposed multibeamforming of MIMO MC-CDMA structure having the same number of beamformer as the number of transmit antenna is derived by calculating the error signals between the coded pilot symbols and the corresponding received signals from the multiple transmitters of the desired user in the frequency domain, transforming the frequency-domain error signals into time-domain error signals, and updating the weights of the multibeamformer in the time-domain in the direction minimizing the mean squared error (MSE). The proposed approach can track each direction of arrival (DOA) of the signals from multi-antennas of a desired user. The performance improvement is investigated through computer simulation by applying the proposed approach to MIMO MC-CDMA system in a multipath fading channel with multiusers.

Downlink Space Division Multiple Access with Dynamic Slot Allocation for Multi-User MIMO Systems (복수 사용자 MIMO 시스템을 위한 동적 슬롯 할당 하향링크 공간분할 다중접속 기술)

  • 임민중
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.61-67
    • /
    • 2004
  • The next generation cellular wireless communication systems require high data rate transmissions and large system capacities. In order to meet these requirements, multiple antennas can be used at the base and mobile stations, forming MIMO(Multiple Input Multiple Output) channels. This paper proposes a MIMO SDMA(Space Division Multiple Access) technique with dynamic slot allocation which allows the transmitter to efficiently transmit parallel data streams to each of multiple receivers. The proposed technique can increase system capacities significantly by transmitting a larger number of data streams than conventional MIMO techniques while minimizing the performance degradation due to the beamforming dimension reduction.

Performance of MIMO-OFDM Systems using The Relay With Multi-Antennas for Cooperative Diversity (Put English Title Here) (다중 안테나의 relay를 가진 MIMO-OFDM시스템의 Cooperative diversity에 따른 성능)

  • Kim, Chan-Kyu;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, the new cooperative communication techniques is proposed for multi-input multi-output(MIMO)-orthogonal frequency division multiplexing (OFDM) system using the relay with multiple antenna. As the MIMO channel is formed by space time coding at the MS(mobile station)-RS(relay station) and RS-BS(base station), we can get the cooperative diversity and MIMO diversity gain simultaneously. Therefore, the performance of MIMO-OFDM system using the relay with multiple-antennas is very improved. And the simple power allocation technique is Proposed for the transmitting power of the mobile station and the relay.

Performance Analysis of HDR-WPAN System with MIMO Techniques (MIMO 기법을 적용한 HDR-WPAN 시스템의 성능분석)

  • Han Deog-Su;Kang Chul-Gyu;Oh Chang-Heon;Cho Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1502-1509
    • /
    • 2006
  • In this paper, we proposed reliability and capacity enhancement methods for IEEE 802.15.3 HDR-WPAN (High Data Rate-Wireless Personal Area Network) system which is currently getting an interest in home network technology adopting a MIMO technique. We also analyzed performance or the proposed system through a computer simulation. The HDR-WPAN system using V-BLAST algorithm, transmitting the different signal vector to each other's sub-channel, can get the transmission speed of more than 110Mbps using two Tx/Px antenna without bandwidth expansion in TCM-64QAM mode. Also the proposed system has reliability of 104 at $E_b/N_0=35dB$ under the Rayleigh fading channel in case of two Tx/Rx antenna with MMSE algorithm. The HDR-WPAN system adopting V-BLAST method has its drawback which is very complicated to determine the decision-ordering at the receiver. But, the proposed system enhances the transmission capacity and reliability without extra bandwidth expansion by sending data streams to multiple antennas.

Performance Analysis for MIMO Multiuser Systems considering Selection of Transmit Antennas, Constellations and Powers in Low-to-medium Mobile Speed (중저속 이동체환경에서의 MIMO시스템 기반 안테나 선택과 전력할당 성능분석)

  • Yoo Hyun;Kim Jin-Su;Kim Jong-Ki;Seo Myoung-Seok;Kwak Kyung-Sup
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.776-781
    • /
    • 2005
  • In this paper, using received channel information, we analyze performance in MIMO multiuser system in low-to-medium mobile speed by selecting each user's constellations, powers, and transmit antennas. Given a target of symbol error, we determine each user's constellations, powers, selected tranprobability smit antennas such that the required signal-to-noise(SNR) is minimized for MMSE, V-BLAST receiver according to each user's information and channel estimation information. When we do power control with antenna selection technique through uplink channels of MIMO system in low-to-medium mobile speed, we analyze system performance with wireless channel information from Base-Station(BS) to Users. By simulation, it has been shown that the proposed antenna selection scheme for transmitting data offer better performance improvement than all transmit antennas for transmitting data.

  • PDF

Achievable Sum Rate Analysis of ZF Receivers in 3D MIMO Systems

  • Li, Xingwang;Li, Lihua;Xie, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1368-1389
    • /
    • 2014
  • Three-dimensional multiple-input multiple-output (3D MIMO) and large-scale MIMO are two promising technologies for upcoming high data rate wireless communications, since the inter-user interference can be reduced by exploiting antenna vertical gain and degree of freedom, respectively. In this paper, we derive the achievable sum rate of 3D MIMO systems employing zero-forcing (ZF) receivers, accounting for log-normal shadowing fading, path-loss and antenna gain. In particular, we consider the prevalent log-normal model and propose a novel closed-form lower bound on the achievable sum rate exploiting elevation features. Using the lower bound as a starting point, we pursue the "large-system" analysis and derive a closed-form expression when the number of antennas grows large for fixed average transmit power and fixed total transmit power schemes. We further model a high-building with several floors. Due to the floor height, different floors correspond to different elevation angles. Therefore, the asymptotic achievable sum rate performances for each floor and the whole building considering the elevation features are analyzed and the effects of tilt angle and user distribution for both horizontal and vertical dimensions are discussed. Finally, the relationship between the achievable sum rate and the number of users is investigated and the optimal number of users to maximize the sum rate performance is determined.

User and Antenna Joint Selection Scheme in Multiple User Massive MIMO Networks (다중 사용자 거대 다중 안테나 네트워크에서의 사용자 및 안테나 선택 기법)

  • Ban, Tae-Won;Jeong, Moo-Woong;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • Recently, multi-user massive MIMO (MU-Massive MIMO) network has attracted a lot of attention as a technology to accommodate explosively increasing mobile data traffic. However, the MU-Massive MIMO network causes a tremendous hardware complexity in a base station and computational complexity to select optimal set of users. In this paper, we thus propose a simple algorithm for selecting antennas and users while reducing the hardware and computational complexities simultaneously. The proposed scheme has a computational complexity of $O((N-S_a+1){\times}min(S_a,K))$, which is significantly reduced compared to the complexity of optimal scheme based on Brute-Force searching, $$O\left({_N}C_S_a\sum_{i=1}^{min(S_a,K)}_KC_i\right)$$, where N, $S_a$, and K denote the number of total transmit antennas, the number of selected antennas, and the number of all users, respectively.

Performance Evaluation of MIMO System by Spatial Correlation in Reverberation Chamber (잔향챔버내에서 공간 상관도에 의한 MIMO 시스템의 성능평가)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.26-33
    • /
    • 2014
  • The spatial correlation (SC) for a multipath environment based on a $2{\times}2$ MIMO system are computed on the observation planes in the Rayleigh/Rician fading channels inside a mode stirred chamber. The correlation coefficients were obtained and compared for different distances and orthogonal polarization between two transmit antennas. The proposed method is useful for quantifying the potential diversity gain in antenna diversity systems.