• Title/Summary/Keyword: MIMO(Multiple-input multiple-output)

Search Result 671, Processing Time 0.021 seconds

New Transmit Antenna Selection Schemes for Multipath Environment (다중경로 환경을 위한 새로운 송신 안테나 선택 기법)

  • 임연주;민범석;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6A
    • /
    • pp.607-613
    • /
    • 2004
  • The future wireless communication systems will use spatial multiplexing with Multiple Input Multiple Output(MIMO) system to take advantage of high spectral efficiencies. In such systems it will be desirable to select a sub-set of available transmit or receive antennas to reduce cost and complexity. In this paper we propose a novel transmit antenna selection schemes for MIMO systems which is suitable for multipath environment. The proposed transmit antenna selection schemes offer better BER performance than that of MIMO systems without antenna selection and with traditionally proposed antenna selection schemes.

Adaptive P-SLM Method with New Phase Sequence for PAPR Reduction of MIMO-OFDM Systems (MIMO-OFDM 시스템의 PAPR 감소를 위한 새로운 위상시퀀스의 적응형 P-SLM기법)

  • Yoo, Eun-Ji;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3C
    • /
    • pp.149-156
    • /
    • 2011
  • MIMO-OFDM(Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing) has been spotlighted as a solution of high-quality service for next generation's wireless communications. However, like OFDM, one of main problems of MIMO-OFDM is the high PAPR(Peak-to-Average Power Ratio). In this paper, an adaptive P-SLM(Partitioned-SeLetive Mapping) based on new phase sequence is proposed to reduce PAPR. The proposed method has better performance and lower complexity than conventional method due to the use of periodic multiplication and adaptability by fixed critical PAPR value. Simulation results show that the proposed method has better performance and lower complexity than conventional method.

Optimal Number of Base Station Antennas and Users in MF Based Multiuser Massive MIMO Systems (MF 기반 다중 사용자 Massive MIMO 시스템의 최적 기지국 안테나 수 및 사용자 수 분석)

  • Jung, Minchae;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.724-732
    • /
    • 2013
  • In this paper, we analyze a performance of multiuser massive multiple-input and multiple-output (MIMO) system. We derive the ergodic cell capacity based on a downlink frame structure and analyze the ergodic cell capacity with respect to the number of base station (BS) antennas and the number of users. This paper shows that the ergodic cell capacity is a concave function with respect to the number of BS antennas and the number of users, and also derives the optimal numbers of BS antennas and users for the maximum cell capacity. The simulation results verify the derived analyses and show that the derived numbers of BS antennas and users provide the maximum cell capacity.

Energy Saving in Cluster-Based Wireless Sensor Networks through Cooperative MIMO with Idle-Node Participation

  • Fei, Li;Gao, Qiang;Zhang, Jun;Wang, Gang
    • Journal of Communications and Networks
    • /
    • v.12 no.3
    • /
    • pp.231-239
    • /
    • 2010
  • In cluster-based wireless sensor networks, the energy could be saved when the nodes that have data to transmit participate in cooperative multiple-input multiple-output (MIMO). In this paper, by making the idle nodes that have no data to transmit participate in the cooperative MIMO, it is found that much more energy could be saved. The number of the idle nodes that participate in the cooperative MIMO is optimized to minimize the total energy consumption. It is also found that the optimal number of all the nodes participating in cooperative communication does not vary with the number of nodes that have data to transmit. The proposition is proved mathematically. The influence of long-haul distance and modulation constellation size on the total energy consumption is investigated. A cooperative MIMO scheme with help-node participation is proposed and the simulation results show that the proposed scheme achieves significant energy saving.

A Consideration on the Identifiability for Blind Signal Separation in MIMO LTI Channels (MIMO LTI 채널에서의 블라인드 신호분리시의 식별성에 대한 고찰)

  • Kwon, Soon-Man;Kim, Seog-Joo;Lee, Jong-Moo;Kim, Choon-Kyung;Cho, Chang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.265-267
    • /
    • 2004
  • A blind separation problem in a multiple-input-multiple-output (MIMO) linear time-invariant (LTI) system with finite-alphabet inputs is considered. A discrete-time matrix equation model is used to describe the input-output relation of the system in order to make full use of the advantages of modern digital signal processing techniques. At first, ambiguity problem is investigated. Then, based on the results of the investigation, a new identifiability condition is proposed for the case of an input-data set which is widely used in digital communication. A probability bound such that an arbitrary input matrix satisfies the identifiability condition is derived. Finally, Monte-Carlo simulation is performed to demonstrate the validity of our suggestions.

  • PDF

Control of MIMO System Using Multiple Fuzzy Logic Controller (다중 퍼지 로직 제어기를 이용한 다변수 시스템의 제어)

  • Seo, Ho-Joon;Seo, Sam-Joon;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1076-1078
    • /
    • 1996
  • In this paper, we design the robust controller for MIMO system using multiple fuzzy logic controller. Based on the knowledge of system input/output data, we introduce the simple adaptation laws to approximate the decoupling matrix from input channel to output channel. The proposed control algorithm is applied numerical example.

  • PDF

Design and Performance Evaluation of Load-Modulation MIMO System Using High-Order Modulation (고차 변조를 사용하는 Load-Modulation MIMO 시스템 설계와 성능 평가)

  • Lee, Dong-Hyung;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2121-2130
    • /
    • 2015
  • In this paper, we analyze LM-MIMO (load-modulation multiple-input multiple-output) system with single RF chain. And then, we confirm that load modulation technique can support generation of high-order m-PSK modulation and m-QAM modulation in LM-MIMO system. Finally we evaluate performance of LM-MIMO system with load modulation. Conventional MIMO system requires a number of RF chains for expansion of MIMO dimension. A number of RF chains can cause various problems. On the other hand, although LM-MIMO system is expanded, LM-MIMO system requires single RF chain only. Therefore, LM-MIMO system has low-complexity and low power consumption. As results, we can confirm that load modulation of T-model can modulate high-order m-PSK and m-QAM singal. Also, we can confirm that $4{\times}4$ LM-MIMO system using load modulation has a similar performance to conventional $4{\times}4$ MIMO system.

Energy-efficient semi-supervised learning framework for subchannel allocation in non-orthogonal multiple access systems

  • S. Devipriya;J. Martin Leo Manickam;B. Victoria Jancee
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.963-973
    • /
    • 2023
  • Non-orthogonal multiple access (NOMA) is considered a key candidate technology for next-generation wireless communication systems due to its high spectral efficiency and massive connectivity. Incorporating the concepts of multiple-input-multiple-output (MIMO) into NOMA can further improve the system efficiency, but the hardware complexity increases. This study develops an energy-efficient (EE) subchannel assignment framework for MIMO-NOMA systems under the quality-of-service and interference constraints. This framework handles an energy-efficient co-training-based semi-supervised learning (EE-CSL) algorithm, which utilizes a small portion of existing labeled data generated by numerical iterative algorithms for training. To improve the learning performance of the proposed EE-CSL, initial assignment is performed by a many-to-one matching (MOM) algorithm. The MOM algorithm helps achieve a low complex solution. Simulation results illustrate that a lower computational complexity of the EE-CSL algorithm helps significantly minimize the energy consumption in a network. Furthermore, the sum rate of NOMA outperforms conventional orthogonal multiple access.

Link-level Performance Verification of the Multiple Antenna Systems - MIMO OFDM vs. Smart Antenna OFDM (OFDM 기반 다중 안테나 시스템의 링크레벨 성능검증 - MIMO OFDM vs. Smart Antenna OFDM)

  • Park Sung-Ho;Kim Kyoo-Hyun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.563-574
    • /
    • 2006
  • This paper implements SCM(Spatial Channel Model), a kind of ray-tracing method which has characteristics similar to realistic wave propagation environments, for link-level performance analysis of OFDM(Orthogonal Frequency Division Multiplexing) based multiple antenna systems. The SCM is proposed by 3GPP & 3GPP2 Spatial Channel AHG(Ad-hoc Group) for system-level performance validation. In this paper, we modify the system level parameters and channel coefficient of SCM to compare the link-level performances of OFDM based multiple antenna systems. Through computer simulations, we manifest the implemented SCM channel characteristics. We analyze a realistic link-level performance of OFDM based conventional MIMO(Multiple Input Multiple Output) system and smart antenna system in the implemented channel. We also include the link-level performance of OFDM based multiple antenna systems in I-METRA(Intelligent Multi Element Transmit and Receive Antenna) and independent channel environments with the same system parameters. We suggest appropriate multiple antenna system in the given environment by comparing the link-level performance in the spatial channels that have different channel correlation values.

Performance Analysis of Antenna Polarization Diversity on LTE 2×2 MIMO in Indoor Environment (실내 환경에서 LTE 2×2 MIMO 기술의 안테나 편파 다이버서티 성능 분석)

  • Nguyen, Duc T.;Devi, Ningombam Devarani;Shin, Seokjoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.1
    • /
    • pp.7-21
    • /
    • 2017
  • Multiple antenna techniques employed in fourth generation mobile communication systems are affected on their performance mostly by transmission environments and antenna configurations. The performance of the indoor LTE(Long-term Evolution) MIMO(multiple input multiple output) has been rigorously evaluated with considering various diversity transmission schemes and propagation conditions in the paper. Specifically, MAC TP(medium access control throughput) and LTE system parameters related to the MIMO technique are analyzed for several indoor propagation conditions. The performance comparison between multiple antenna diversity mode and single antenna mode has been derived as well. The results performed in the paper give the guideline on antenna configurations of polarization diversity in LTE 2×2 MIMO for various indoor channel environments, and possibly are exploited by network operators and antenna manufacturers.