• Title/Summary/Keyword: MIMO(Multiple-Input-Multiple-Output)

Search Result 668, Processing Time 0.025 seconds

Performance of an Adaptive-MCM System with Combining AMC and MIMO Schemes (AMC와 MIMO 기법이 결합된 Adaptive-MCM 시스템의 성능 분석)

  • Seo, Chang-Woo;Joe, In-Sik;Yoon, Gil-Sang;Lee, Jung-Hwan;Hwang, In-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.2
    • /
    • pp.501-506
    • /
    • 2010
  • The proposal set out in this paper, is the Adaptive-MCM(Modulation, Coding and MIMO) system, which results from the combination of adaptive modulation and coding (AMC) and multiple input multiple output (MIMO) schemes. The performance of this system is analyzed through computer simulation. By using the MIMO scheme adaptively as well, the proposed Adaptive-MCM system, presents a better improvement of data rate and error performance compared to the AMC system. The throughput performance of the Adaptive-MCM system is analyzed and compared with the throughput performance of Non-Adaptive-MCM Systems. As a result of the simulation, we can infer that, at a fixed MCM level, there is an improvement of the trade-off between secure Signal to Noise Ratio (SNR) and a high data rate. Consequently, this trade-off improvement results in a better average data rate.

Performance Evaluation of Channel Estimation Scheme for ATSC 3.0 MIMO under Fixed Reception Environment (고정 수신 환경에서 ATSC 3.0 MIMO의 채널 추정 방법에 따른 성능 평가)

  • Kim, Hyeongseok;Yeom, Myeonggil;Kim, Jeongchang;Park, Sung-Ik;Jung, Hoiyoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.879-891
    • /
    • 2019
  • This paper provides performance evaluations of various channel estimation schemes for Advanced Television Systems Committee (ATSC) 3.0 multiple-input multiple-output (MIMO) system under a fixed reception environment. ATSC 3.0 MIMO system can obtain high spectral efficiency and improved reception performance compared to conventional terrestrial broadcasting systems. The ATSC 3.0 MIMO defines Walsh-Hadamard and null pilot encoding algorithms and the amplitude and phase of MIMO pilots are different from those of single-input single-output pilots. At the receiver, linear and discrete Fourier transform (DFT)-based interpolations can be used for the channel estimation. This paper provides the various combinations of the interpolation schemes for channel estimation in time and frequency dimensions, and then analyzes the performance of the various combinations through the computer simulation. The results of computer simulation show that the combination of the linear interpolation in the time dimension and then DFT-based interpolation in the frequency dimension can obtain the best performance among the considered combinations.

Iterative Group Detection and Decoding for Large MIMO Systems

  • Choi, Jun Won;Lee, Byungju;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.609-621
    • /
    • 2015
  • Recently, a variety of reduced complexity soft-in soft-output detection algorithms have been introduced for iterative detection and decoding (IDD) systems. However, it is still challenging to implement soft-in soft-output detectors for MIMO systems due to heavy burden in computational complexity. In this paper, we propose a soft detection algorithm for MIMO systems which performs close to the full dimensional joint detection, yet offers significant complexity reduction over the existing detectors. The proposed algorithm, referred to as soft-input soft-output successive group (SSG) detector, detects a subset of symbols (called a symbol group) successively using a deliberately designed preprocessing to suppress the inter-group interference. In fact, the proposed preprocessor mitigates the effect of the interfering symbol groups successively using a priori information of the undetected groups and a posteriori information of the detected groups. Simulation results on realistic MIMO systems demonstrate that the proposed SSG detector achieves considerable complexity reduction over the conventional approaches with negligible performance loss.

Low-Complexity Soft-MIMO Detection Algorithm Based on Ordered Parallel Tree-Search Using Efficient Node Insertion (효율적인 노드 삽입을 이용한 순서화된 병렬 트리-탐색 기반 저복잡도 연판정 다중 안테나 검출 알고리즘)

  • Kim, Kilhwan;Park, Jangyong;Kim, Jaeseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.841-849
    • /
    • 2012
  • This paper proposes an low-complexity soft-output multiple-input multiple-output (soft-MIMO) detection algorithm for achieving soft-output maximum-likelihood (soft-ML) performance under max-log approximation. The proposed algorithm is based on a parallel tree-search (PTS) applying a channel ordering by a sorted-QR decomposition (SQRD) with altered sort order. The empty-set problem that can occur in calculation of log-likelihood ratio (LLR) for each bit is solved by inserting additional nodes at each search level. Since only the closest node is inserted among nodes with opposite bit value to a selected node, the proposed node insertion scheme is very efficient in the perspective of computational complexity. The computational complexity of the proposed algorithm is approximately 37-74% of that of existing algorithms, and from simulation results for a $4{\times}4$ system, the proposed algorithm shows a performance degradation of less than 0.1dB.

Beamformer-based Acquisition in CDMA-MIMO Communication Systems (CDMA-MIMO 통신 시스템에서 빔형성기 기반의 코드 동기 획득 기술)

  • Kim, Sang-Choon;Baek, Sun-Young;An, Jin-Young;Son, Kyoung-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1271-1277
    • /
    • 2008
  • This paper proposes the code acquisition scheme on a MIMO channel for preamble search in a CDMA-MIMO uplink system. The multiple transmit/receive antennas are used for beamforming. The performance of a ML code acquisition technique based on transmit and receive beamforming is analyzed by considering rho detection probability. The acquisition performance and MAT for a MIMO code acquisition system are numerically evaluated. It is shown that multiple transmit antennas can give the code acquisition system a transmit beamforming gain and result in much better performance than a SIMO case.

Soft-Decision Algorithm with Low Complexity for MIMO Systems Using High-Order Modulations (고차 변조 방식을 사용하는 MIMO 시스템을 위한 낮은 복잡도를 갖는 연판정 알고리즘)

  • Lee, Jaeyoon;Kim, Kyoungtaek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.981-989
    • /
    • 2015
  • In a log likelihood ratio(LLR) calculation of the detected symbol, multiple-input multiple-output(MIMO) system applying an optimal or suboptimal algorithm such as a maximum likelihood(ML) detection, sphere decoding(SD), and QR decomposition with M-algorithm Maximum Likelihood Detection(QRM-MLD) suffers from exponential complexity growth with number of spatial streams and modulation order. In this paper, we propose a LLR calculation method with very low complexity in the QRM-MLD based symbol detector for a high order modulation based $N_T{\times}N_R$ MIMO system. It is able to approach bit error rate(BER) performance of full maximum likelihood detector to within 1 dB. We also analyze the BER performance through computer simulation to verify the validity of the proposed method.

Joint Interference Alignment and Power Allocation for K-User Multicell MIMO Channel Through Staggered Antenna Switching (엇갈린 안테나 스위칭을 통한 K- 사용자 다중 셀 MIMO 채널의 조인트 간섭 정렬 및 전력 할당)

  • Kim, Jeong-Su;Lee, Moon-Ho;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.33-48
    • /
    • 2018
  • In this paper, we characterise the joint interference alignment and power allocation strategies for a K-user multicell multiple-input multiple-output (MIMO) Gaussian interference channel. We consider a MIMO interference channel with a blind interference alignment through staggered antenna switching on the receiver. We explore the power allocation and the feasibility condition for cooperative cell-edge (CE) mobile users (MUs) by assuming that the channel state information is unknown. The new insight behind the transmission strategy of the proposed scheme is premeditated (randomly generated transmission strategy) and partial cooperative CE MUs, where the transmitter is equipped with a conventional antenna, the receiver is equipped with a reconfigurable multimode antenna (staggered antenna switching pattern), and the receiver switches between preset T modes. Our proposed scheme assists and aligns the desired and interference signals to cancel the common interference signals, since the received signal must have a corresponding independent signal subspace. The sum capacity for a K-user multicell MIMO Gaussian interference channel with reconfigurable multimode antennas is completely characterised.

A Novel Equalization Method of Multiple Transceivers of Multiple Input Multiple Output Antenna for Beam-farming and the Estimation of Direction of Arrival (빔조향 및 전파도래각 추정을 위한 새로운 다중입력 다중출력 안테나 송수신부 구성방법)

  • 이성종;이종환;염경환;윤찬의
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.288-300
    • /
    • 2002
  • In this paper, a novel method of equalization of RF transceivers is suggested for MIMO(Multiple Input Multiple Output) antenna actively studied for high speed data transmission in the recent IMT-2000 system. The core of suggestion is in equalizing the transfer characteristics of multiple transceivers using feedback and memory during the predefined calibration time. This makes it possible to weight the signals in the intermediate frequency, which is easier in the application of recently developed DoA(Direction of Arrival) algorithms. In addition, the time varying optimum cell formation according to traffic is feasible by antenna beam-forming based on the DoA information. The suggested method of equalizing multiple transceivers are successfully verified using envelope simulation. two outputs. This paper is concerned with the diagnosis of multiple crosstalk-faults in OSM. As the network size becomes larger in these days, the convent.nal diagnosis methods based on tests and simulation be.me inefficient, or even more impractical. We propose a simple and easily implementable alg?ithm for detection and isolation of the multiple crosstalk-faults in OSM. Specifically, we develop an algorithm for isolation of the source fault in switc.ng elements whenever the multiple crosstalk-faults are.etected in OSM. The proposed algorithm is illustrated by an example of 16$\times$16 OSM.

Equal Gain Block Decomposition Methods for Multiuser MIMO Networks

  • Hwang, Insoo;Kang, Inseok;Hwang, Intae;You, Cheolwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1156-1173
    • /
    • 2021
  • In this paper, we propose a new joint precoder and postcoder design strategy to support multiple streams per user in multiuser multiple-input multiple-output (MIMO) systems. We propose two step precoding strategies using equal channel gain decomposition and block diagonalization at the transmitter. With the proposed precoder, the multiuser MIMO channel can be decomposed into multiple parallel channels with equal channel gain per user. After applying receive postcoder which is generated and sent by the transmitter, we can use ML based decoder per stream to achieve full receive diversity. Achievable sum rate bound and diversity performance of the proposed algorithm are presented with feedback signaling design and quantitative complexity analysis. Simulation results show that the proposed algorithm asymptotically approaches to the sum rate capacity of the MIMO broadcast channel while maintaining full diversity order.

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.