• Title/Summary/Keyword: MIM(Metal Injection Molding)

Search Result 47, Processing Time 0.024 seconds

A Patent Analysis on Metal Injection Molding Technology (금속.사출성형 특허분석)

  • 길상철;배영문;이병민
    • Journal of Korea Technology Innovation Society
    • /
    • v.5 no.3
    • /
    • pp.382-395
    • /
    • 2002
  • Metal Injection Molding(MIM) is a technology without any mechanical processing, which is a promising area backed up by nano powder technology developed in late 1990's. The market was about 24 billion U$ in 1999. Many applications are made in process development, uses, powder making, hindering and sintering, of which order is in terms of the number of patents. This technologies are mainly developed by US firms, and applied by Japanese firms. Europe and Korea are still catch-up stage. More efforts should be made in this field because new opportunities are opening, thanks to nano technology.

  • PDF

Analysis of Microstructure Evolution using Different Powder Metallurgy Process in Ti-X Alloy System (Ti-X계 합금의 분말야금 공정 차이에 따른 미세조직변화 분석)

  • Kwon, Hyeok-Gon;Kim, Doo-Hyeon;Gang, Min;Park, Ji-Hwan;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2021
  • In this study, Ti-X (X=Mn, Fe, Mo) powder alloys were designed and manufactured by both powder metallurgy (PM) and metal powder injection molding (MIM) process to improve strength and formability compared to CP-Ti powder materials. It was found that the lamellar microstructure consisted of α and β phases was formed in PM-processed alloys. However, MIM-processed alloys showed not the lamellar microstucture but the equiaxed α + β microstructure. It was also revealed that the contents of X component and feedstock were not affected to microstructure evolution. The reason why different microstructure was appeared between PM-processed and MIM-processed alloys is not clear yet, but supposed to be the effect of intersticial elements such as C, H and N derived from feedstock during debinding process of MIM.

Metal Injection Molding Process of $Mo_2FeB_2$ Boride Base Cermets

  • Tashiro, Hirofumi;Hirata, Kourou;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.765-766
    • /
    • 2006
  • [ $Mo_2FeB_2$ ] boride base cermets produced by a novel sintering technique, called reaction boronizing sintering through a liquid phase, have excellent mechanical properties and wear and corrosion-resistances. Hence, the cermets are applied to the injection molding die-casting machine parts and so on. We investigated that the effect of deoxidization and sintering temperature on mechanical properties and deformation of the MIM processed cermets. As a result, deoxidization temperature of 1323K and sintering temperature of 1518K were suitable. The MIM products of the cermets showed allowable dimensional accuracy and the same mechanical properties as the press-sintered ones.

  • PDF

Advanced Powder Processing Techniques of Ti Alloy Powders for Medical and Aerospace Applications

  • Miura, Hideshi
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.323-331
    • /
    • 2013
  • In this paper, two kinds of advanced powder processing techniques Metal Injection Molding (MIM) and Direct Laser Forming (DLF) are introduced to fabricate complex shaped Ti alloy parts which are widely used for medical and aerospace applications. The MIM process is used to strengthen Ti-6Al-4V alloy compacts by addition of fine Mo, Fe or Cr powders. Enhanced tensile strength of 1030 MPa with 15.1% elongation was obtained by an addition of 4 mass%Cr because of the microstructural modification and also the solution strengthening in beta phase. However, their fatigue strength was lower compared to wrought materials, but was improved by HIP. Subsequently, the effect of feeding layer height (FLH) on the characteristics of the DLF compacts was investigated. In the case of 100 ${\mu}m$ FLH, surface roughness was improved and nearly full density (99.8%) was obtained. Also, tensile strength of 1080 MPa was obtained, which is higher than the ASTM value.

Micro Metal Injection Molding Using Hybrid Micro/Nano Powders

  • Nishiyabu, Kazuaki;Kakishita, Kenichi;Osada, Toshiko;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.36-37
    • /
    • 2006
  • This study aims to investigate the usage of nano-scale particles in a micro metal injection molding ($\mu$-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and $0.13{\mu}m$ in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.

  • PDF

Mechanical and Antibacterial Properties of Copper-added Austenitic Stainless Steel (304L) by MIM

  • Nishiyabu, Kazuaki;Masai, Yoshikaze;Ishida, Masashi;Tanaka, Shigeo
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.227-234
    • /
    • 2002
  • For the austenitic stainless steel (304L) manufactured by metal injection molding(MIM), the effects of copper content and sintering temperature on the mechanical properties, antibacterial activities, corrosion resistance, and electric resistances were investigated. The specimens were prepared by injection molding of the premixed powders of water-atomized 304 L and Cu with poly-acetyl binders. The green compacts were prepared with various copper contents from 0 to 10 wt.% Cu, which were debound thermally at 873 K for 7.2 ks in $N_2$gas atmosphere and subsequently sintered at various temperatures from 1323 K to 1623 K for 7.2 ks in Ar gas atmosphere. The relative density and tensile strength of the sintered compacts showed the minimum values at 5 and 8 wt.% Cu, respectively. Both the relative density and the tensile strength of the specimen with 10 wt.% Cu sintered at 1373 K showed the highest values, higher than those of copper-free specimen. Antibacterial activities investigated by the plastic film contact printing method for bacilli and the quantitative analysis of copper ion dissolved in water increased as the increase of the copper content to stainless steels. It was also verified by the measurement of pitting potential that the copper addition in 304 L could improve the corrosion resistance. Furthermore the electric conductivity increased with the increase of copper content.

Molding Properties and Causes of Deterioration of Recycled MIM Feedstock

  • Cheng, Li-Hui;Hwang, Kuen-Shyang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.215-216
    • /
    • 2006
  • To lower the cost of MIM products, the gate and runner materials and green parts with defects are usually recycled. It is necessary to understand what causes the recycled products to deteriorate. The results show that the viscosity of the 1R (recycled once) feedstock was slightly lower than that of the fresh material. However, as the number of recyclings increased, the viscosity increased, while the density decreased, and more defects were noticed duri ng solvent debinding. These deteriorations were mainly caused by the increase of the melting point of the backbone binder and the oxidation of the filler or paraffin wax.

  • PDF

Thermal Shock Durability Test of a Gasoline Turbocharger Waste Gate Valve Assembly Manufactured by a Metal Injection Molding (금속분말사출성형공법을 이용한 가솔린 터보차저의 웨이스트 게이트 밸브 어셈블리 열 충격 내구 시험)

  • Nam, Chungwoo;Han, Manbae;Chun, Bongsu;Shin, Jaesik;Kim, Jongha;Min, Doosik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • A waste gate valve (WGV) assembly for a gasoline turbocharger is typically manufactured by means of precision casting. In this study, however, it was newly manufactured in a more innovative way, metal injection molding (MIM) using Inconel 713C alloy, and its performance was tested in a 1.6L direct injection gasoline engine by a thermal shock durability test that lasted 300 hours, after which the results were compared to those of a precision-cast WGV assembly with regard to the engine intake boost pressure, turbine wheel speed, and transient intake pressure. It was found that the two WGV assemblies showed similar performance levels throughout the durability test.

Preparation of Metal Injection Molded Dental Components using Spheroidized Ti Powders by Plasma Process (플라즈마 공정으로 구상화된 티타늄 분말과 금속사출성형 공정을 이용한 치과용 부품 제조)

  • Gwak, Ji-Na;Yang, Sangsun;Yun, Jung-Yeul;Kim, Ju-Yong;Park, Seongjin;Kim, Hyun-Seung;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.467-473
    • /
    • 2013
  • This research presents a preparation method of dental components by metal injection molding process (MIM process) using titanium scrap. About $20{\mu}m$ sized spherical titanium powders for MIM process were successfully prepared by a novel dehydrogenation and spheroidization method using in-situ radio frequency thermal plasma treatment. The effects of MIM process parameters on the mechanical and biological properties of dental components were investigated and the optimum condition was obtained. After sintering at $1250^{\circ}C$ for 1 hour in vacuum, the hardness and the tensile strength of MIMed titanium components were 289 Hv and 584 MPa, respectively. Prepared titanium dental components were not cytotoxic and they showed a good cell proliferation property.