• Title/Summary/Keyword: MIL-S-901D

Search Result 10, Processing Time 0.021 seconds

Shock Response Analysis of A MIL-S-901D Floating Shock Platform (MIL-S-901D 부유식 충격시험기의 충격응답 해석)

  • 권정일;이상갑;정정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.761-765
    • /
    • 2001
  • Shock responses of the MIL-S-901D standard floating shock platform("SFSP") subject to underwater explosions(UNDEX) are analyzed by using the LS-DYNA/USA. For the analysis, surrounding fluids as well as the SFSP are included in a 3D FE model to consider the cavitation effects of the UNDEX shock wave. The calculated results are compared with the existing test results and it is confirmed that the analysis results predict accurately the shock behaviors of the SFSP.

  • PDF

Review on the Shock Characteristics of the MIL-S-901D Light Weight Shock Machine (MIL-S-901D 경중량 충격시험기의 하중특성에 관한 고찰)

  • 정경훈;김병현;양용진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.750-754
    • /
    • 2001
  • All critical equipment installed aboard naval ships and submarines is required to be shock-qualified by tests on the MIL-S-901D shock test machines where testing is practical. The intent of the shock requirements is to produce combat vessels which are resistant to the underwater explosion weapon attack. To efficiently design equipment for passing a series of shock tests, the shock environment of the shock test machines should be clearly identified. In this paper, the shock characteristics of the MIL-S-901D Light Weight Shock Machine(LWSM) are reviewed, based on the existing test data.

  • PDF

Shock Response Analysis of MIL-S-901D Floating Shock Platform (MIL-S-901D 부유식 충격시험기의 충격응답해석)

  • Kwon, Jeong-Il;Lee, Sang-Gab;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.493-498
    • /
    • 2005
  • Underwater explosion shock response analysis of a MIL-S-901D Standard Floating Shock Platform(SFSP) was performed using LS-DYNA/USA, and the accuracy of analysis results was examined through the comparison of them with the existing test results. Surrounding fluid as well as the SFSP was included In a three dimensional finite element model for the consideration of the cavitation effects of UNOEX shock wave. It was confirmed that the analysis results could predict accurately the shock behaviors of the SFSP, and the response characteristics according to heavy weight shock tests could be figured out well.

Numerical Simulation of MIL-S-901D Heavy Weight Shock Test of a Double Resiliently Mounted Main Engine Module (이중 탄성지지 주기관 모듈의 MIL-S-901D 중중량 충격시험 수치 시뮬레이션)

  • Kwon, Jeong-Il;Lee, Sang-Gab;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.499-505
    • /
    • 2005
  • Underwater explosion shock response analysis of a nonlinear double resiliently mounted equipment on a MIL-S-901D Large floating Shock Platform(LFSP) was carried out using LS-DYNA3D/USA. As a nonlinear double resiliently mounted equipment, real main engine module of naval ship was considered, where the engine, bearing, and base frame including sound enclosure were treated as rigid bodies with six degrees of freedom. The nonlinear effects of resilient mounts on its shock response characteristics were examined, and the usefulness of our suggested method was also confirmed comparing with calculation results by the equipment maker.

Study for Characteristics of DDAM using MIL-S-901D Shock Test and Transient Response Analysis (MIL-S-901D 충격시험과 과도응답해석을 이용한 DDAM 특성에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1132-1139
    • /
    • 2006
  • Non-contact underwater explosions against surface ship could cause extensive equipment damage during wartime service. Thus, the need to develop methods for the design of shock resistant equipment structures and systems was strongly established. In analytical methods, DDAM(Dynamic Design and Analysis Method) and transient repsonse method are used for ship shock design. In this paper, to analyze the characteristics of DDAM, medium weight shock test, DDAM and transient response analysis for missile system equipment are performed.

Experimental Evaluation of the Performance of Large-Capacity Mounts for Naval Shipboard Equipments (함정탑재장비용 대용량 마운트의 성능시험평가)

  • Moon, Seok-Jun;Kim, Heung-Sub;Park, Jin-Woo;Park, Jin-Ho;Oh, Kwang-Suk;Jeong, Jong-Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.275-281
    • /
    • 2015
  • Mounts for shipboard equipment in naval ships play an important role for vibration and shock suppression. New large-capacity resilient mounts, SDR-D30 and SDR-D45, have been developed. This paper involves performance tests for the mount which have maximum load of 30 kN and 45 kN, respectively. The performance tests have been carried out for several mounts based on military standards, such as MIL-M-19863D(SH), MIL-M-21693C(SH), MIL-M-17508F(SH), and MIL-S-901D(NAVY). The test items consist of deflection at upper rate load test, dynamic stiffness, uniformity, static load-deflection(axial, transverse and longitudinal), drift test, fatigue test, and shock test. From these performance tests, it is confirmed that the two mounts have good performances based on military standards.

A Study on Development of an Active Hybrid Mount for Naval Shipboard Equipment (함정 탑재장비용 능동 하이브리드 마운트 개발에 대한 연구)

  • Moon, S.J.;Choi, S.M.;Jeong, J.A.;Choi, S.B.;Jung, W.J.;Koo, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.685-692
    • /
    • 2010
  • A hybrid mount for shipboard machinery installed on naval ships was developed. The mount is combined with a rubber mount and a piezostack actuator. The rubber mount is one of the most popular and effective passive mounts to have been applied to various vibration systems to date. The piezostack actuator is featured by a fast response time, small displacement and low power consumption. Through a series of experimental tests conducted in accordance with MIL-M-17185A(SHIPS), MIL-M-17508F(SH), and MIL-S-901D which are US military specifications related to the performance requirements of the mount, it has been confirmed that the hybrid mount shows more effective performance for use in naval ships.

Design and Performance Evaluation of the Vibration Absorber of Vertical Direction Using Numerical Simulation and Shock Test (수치적 시뮬레이션과 충격 시험을 통한 수직방향 진동절연 완충기 설계 및 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.558-563
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc' spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock Isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

Performance Evaluation of the Vibration Absorber of Vertical Direction using Numerical Modeling and Shock Test (수치 모델링과 충격 시험을 통한 수직방향 진동절연 완충기의 성능 평가)

  • Park, Sang-Gil;Bang, Seung-Woo;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.990-993
    • /
    • 2008
  • Vibration/shock affects biggest taking a train subtraction of vehicle and durability decline. Therefore, absorber is used for vibration/shock isolation and various qualities of the material and design are applied to isolation. This paper proposes vibration/shock absorber that applies 'Disc'spring. Through comparison with 'Disc' spring that has nonlinearity and coil spring that is having linearity, see effect that nonlinearity of isolation gets in vibration/shock isolation. Coil spring and 'Disc' spring are non-linear numerical analysis and simulation through theory for this, get and investigate comparison result through an experiment finally. Expressed and formulated shock through 'Runge-Kutta' method/impact response to nonlinear-vibration-equation of 1 degree of freedom for numerical analysis. Double half sine pulse of excitation used and analyzed result through spectrum response analysis here. Response of disc spring is compared to response of coil spring by changing ho/t ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and to design the optimal absorber under the limited condition. And then, the isolation effect was analyzed through the shock test.

  • PDF