• 제목/요약/키워드: MICROENVIRONMENT

검색결과 354건 처리시간 0.029초

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권6호
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes

  • Song, Yae Chan;Lee, Seung Eon;Jin, Young;Park, Hyun Woo;Chun, Kyung-Hee;Lee, Han-Woong
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.763-773
    • /
    • 2020
  • Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.

3D-culture models as drug-testing platforms in canine lymphoma and their cross talk with lymph node-derived stromal cells

  • An, Ju-Hyun;Song, Woo-Jin;Li, Qiang;Bhang, Dong-Ha;Youn, Hwa-Young
    • Journal of Veterinary Science
    • /
    • 제22권3호
    • /
    • pp.25.1-25.16
    • /
    • 2021
  • Background: Malignant lymphoma is the most common hematopoietic malignancy in dogs, and relapse is frequently seen despite aggressive initial treatment. In order for the treatment of these recurrent lymphomas in dogs to be effective, it is important to choose a personalized and sensitive anticancer agent. To provide a reliable tool for drug development and for personalized cancer therapy, it is critical to maintain key characteristics of the original tumor. Objectives: In this study, we established a model of hybrid tumor/stromal spheroids and investigated the association between canine lymphoma cell line (GL-1) and canine lymph node (LN)-derived stromal cells (SCs). Methods: A hybrid spheroid model consisting of GL-1 cells and LN-derived SC was created using ultra low attachment plate. The relationship between SCs and tumor cells (TCs) was investigated using a coculture system. Results: TCs cocultured with SCs were found to have significantly upregulated multidrug resistance genes, such as P-qp, MRP1, and BCRP, compared with TC monocultures. Additionally, it was revealed that coculture with SCs reduced doxorubicin-induced apoptosis and G2/M cell cycle arrest of GL-1 cells. Conclusions: SCs upregulated multidrug resistance genes in TCs and influenced apoptosis and the cell cycle of TCs in the presence of anticancer drugs. This study revealed that understanding the interaction between the tumor microenvironment and TCs is essential in designing experimental approaches to personalized medicine and to predict the effect of drugs.

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.63-70
    • /
    • 2019
  • Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Up-regulation of Insulin-like Growth Factor Binding Protein-3 Is Associated with Brain Metastasis in Lung Adenocarcinoma

  • Yang, Lishi;Li, Junyang;Fu, Shaozhi;Ren, Peirong;Tang, Juan;Wang, Na;Shi, Xiangxiang;Wu, Jingbo;Lin, Sheng
    • Molecules and Cells
    • /
    • 제42권4호
    • /
    • pp.321-332
    • /
    • 2019
  • The brain is the most common metastatic site of lung adenocarcinoma; however, the mechanism of this selective metastasis remains unclear. We aimed to verify the hypothesis that exposure of tumor cells to the brain microenvironment leads to changes in their gene expression, which promotes their oriented transfer to the brain. A549 and H1299 lung adenocarcinoma cells were exposed to human astrocyte-conditioned medium to simulate the brain microenvironment. Microarray analysis was used to identify differentially expressed genes, which were confirmed by quantitative real-time PCR and western blotting. Knockdown experiments using microRNAs and the overexpression of genes by cell transfection were performed in addition to migration and invasion assays. In vitro findings were confirmed in clinical specimens using immunohistochemistry. We found and confirmed a significant increase in insulin-like growth factor binding protein-3 (IGFBP3) levels. Our results also showed that the up-regulation of IGFBP3 promoted A549 cell epithelial-mesenchymal transition, migration, and invasion, while the knockdown of IGFBP3 resulted in decreased cell motility. We also found that Transforming growth factor-${\beta}$ (TGF-${\beta}$)/Mothers against decapentaplegic homolog 4 (Smad4)-induced epithelial-mesenchymal transition was likely IGFBP3-dependent in A549 cells. Finally, expression of IGFBP3 was significantly elevated in pulmonary cancer tissues and intracranial metastatic tissues. Our data indicate that up-regulation of IGFBP3 might mediate brain metastasis in lung adenocarcinoma, which makes it a potential therapeutic target.

점봉산 참나물 자생지의 환경 및 생육 특성 (Environmental and Growth Characteristics of Pimpinella brachycarpa Habitat in Mt. Jeombong, Korea)

  • 박윤미;김만조
    • 한국산림과학회지
    • /
    • 제100권4호
    • /
    • pp.687-692
    • /
    • 2011
  • 참나물(Pimpinella brachycarpa)은 전국의 숲속 반음지의 습한 환경에서 자라는 다년생 식물이다. 본 연구는 중부지방 강원도의 점봉산에서 이루어졌으며, 참나물 자생지의 환경적인 특징과 미소환경에 따른 생육 특성을 조사하였다. 참나물 개체군은 해발 978~1016 m의 평균 공중 습도가 80%에 달하는 곳에 위치하고 있었으며, 자생지의 토양 특성을 분석한 결과, 토양수분은 평균 26.7%로 상당히 높았으며, 유기물 함량은 11.1~11.7%, 전질소 함량은 0.60%, 유효인산은 19.5~39.0 ppm, 양이온 치환용량은 $20.8{\sim}21.3cmolckg^{-1}$, 평균 산도는 pH 5.1~5.4로 나타났다. 미소환경 별로는 상층부의 개체목 밀도가 낮아 상대적으로 빛이 많이 들어오는 임상에서 자라는 개체들의 줄기의 높이가 수관이 울폐된 곳보다 통계적으로 유의하게 큰 값을 보였다. 이를 통해, 점봉산의 참나물 자생지는 공중습도와 토양 수분이 상당히 높은 곳에 위치하며, 임상내로 들어오는 빛의 양이 증가할수록 생장량이 상대적으로 증가하는 것을 알 수 있었다.

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction

  • Herrero, Alba;Benedicto, Aitor;Romayor, Irene;Olaso, Elvira;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.342-351
    • /
    • 2021
  • Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.

암 대사와 근위축의 연관성 (Association between cancer metabolism and muscle atrophy)

  • 서연주;남주옥
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.387-396
    • /
    • 2022
  • 골격근은 체중의 약 40-50%를 차지하며 자세 유지, 연조직 지지, 체온 유지, 호흡 등 다양한 기능을 수행하는 중요한 조직이다. 전 세계적으로 광범위하게 발생하는 암은 근위축을 동반한 암 악액질을 일으켜 항암제의 효과를 떨어뜨리고 암환자의 삶의 질과 생존율을 크게 떨어뜨린다. 따라서 암 악액질을 개선하기 위한 연구가 진행 중이지만 암과 근육 위축 사이의 연관성에 관한 연구는 거의 없다. 암 세포는 종양 관련 대식세포(TAM), 종양 관련 호중구(TAN) 및 Warburg 효과로 인한 인슐린 저항성을 포함하여 독특한 미세 환경 및 대사를 나타낸다. 따라서 암세포의 미세환경과 대사적 특성, 사이토카인과 인슐린 저항성에 의해 영향을 받을 수 있는 근육 위축의 분자적 기전을 정리하였다. 또한 이는 TAM, TAN, Warburg 효과에 영향을 미치는 물질의 암 악액질 개선 가능성을 시사한다. 본 논문에서는 또한 암 악액질을 개선할 수 있는 단일 화합물 및 이들에 의해 매개되는 신호 전달 경로를 통해 지금까지 확인된 메커니즘을 정리하였다.

MST1R as a potential new target antigen of chimeric antigen receptor T cells to treat solid tumors

  • Wen An;Ju-Seop Kang;Sukjoong Oh;Ang Tu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.241-256
    • /
    • 2023
  • Although chimeric antigen receptor T cell (CAR-T) is a promising immunotherapy in hematological malignancies, there remain many obstacles to CART cell therapy for solid tumors. Identifying appropriate tumor-associated antigens (TAAs) is especially critical for success. Using a bioinformatics approach, we identified common potential TAAs for CAR-T cell immunotherapy in solid tumors. We used the GEO database as a training dataset to find differentially expressed genes (DEGs) and verified candidates using the TCGA database, obtaining seven common DEGs (HM13, SDC1, MST1R, HMMR, MIF, CD24, and PDIA4). Then, we used MERAV to analyze the expression of six genes in normal tissues to determine the ideal target genes. Finally, we analyzed tumor microenvironment factors. The results of major microenvironment factor analyses showed that MDSCs, CXCL1, CXCL12, CXCL5, CCL2, CCL5, TGF- β, CTLA-4, and IFN-γ were significantly overexpressed in breast cancer. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In lung adenocarcinoma, MDSCs, Tregs, CXCL12, CXCL5, CCL2, PD-L1, CTLA-4, and IFN-γ were significantly overexpressed in tumor tissues. The expression of MST1R was positively correlated with TGF- β, CTLA-4, and IFN-γ. In bladder cancer, CXCL12, CCL2, and CXCL5 were significantly overexpressed in tumor tissues. MST1R expression was positively correlated with TGF- β. Our results demonstrate that MST1R has the potential as a new target antigen for treating breast cancer, lung adenocarcinoma, and bladder cancer and may be used as a progression indicator for bladder cancer.