• 제목/요약/키워드: MICROENVIRONMENT

검색결과 358건 처리시간 0.036초

Intravital Laser-scanning Two-photon and Confocal Microscopy for Biomedical Research

  • Moon, Jieun;Kim, Pilhan
    • Medical Lasers
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Intravital microscopy is a high-resolution imaging technique based on laser-scanning two-photon and confocal microscopy, which allows dynamic 3D cellular-level imaging of various biological processes in a living animal in vivo. This unique capability allows biomedical researchers to directly verify a hypothesis in a natural in vivo microenvironment at the cellular level in a physiological setting. During the last decade, intravital microscopy has become an indispensable technique in several fields of biomedical sciences such as molecular and cell biology, immunology, neuroscience, developmental, and tumor biology. The most distinct advantage of intravital microscopy is its capability to provide a longitudinal view of disease progression at the cellular-level with repeated intravital imaging of a single animal over time by saving the images after each session.

Autophagy in the uterine vessel microenvironment: Balancing vasoactive factors

  • Lim, Hyunjung Jade
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제47권4호
    • /
    • pp.263-268
    • /
    • 2020
  • Autophagy, which has the literal meaning of self-eating, is a cellular catabolic process executed by arrays of conserved proteins in eukaryotes. Autophagy is dynamically ongoing at a basal level, presumably in all cells, and often carries out distinct functions depending on the cell type. Therefore, although a set of common genes and proteins is involved in this process, the outcome of autophagic activation or deficit requires scrutiny regarding how it affects cells in a specific pathophysiological context. The uterus is a complex organ that carries out multiple tasks under the influence of cyclic changes of ovarian steroid hormones. Several major populations of cells are present in the uterus, and the interactions among them drive complex physiological tasks. Mouse models with autophagic deficits in the uterus are very limited, but provide an initial glimpse at how autophagy plays a distinct role in different uterine tissues. Herein, we review recent research findings on the role of autophagy in the uterine mesenchyme in mouse models.

A Forgotten Entity following Breast Implant Contracture: Does Baker Need a Change?

  • Pagani, Andrea;Aitzetmuller, Matthias M.;Larcher, Lorenz
    • Archives of Plastic Surgery
    • /
    • 제49권3호
    • /
    • pp.360-364
    • /
    • 2022
  • Although capsular contracture represents one of the most important complications after breast augmentation, local inflammation and fibrosis can lead, to capsular calcification, an often-forgotten radiological sign of capsular contracture. In this article, the authors present a clinical case of breast implant calcification in an 81-year-old patient. Although this complication has been rarely described, the literature was reviewed to clarify the role of the local microenvironment in capsular contracture and calcification. At present, capsular contracture patients are classified using the conventional Baker score and the histological Wilflingseder classification. As it was not possible to consider capsular calcification when classifying our patient using the traditional scores, the authors propose an updated version of the current scale.

Stress granules dynamics: benefits in cancer

  • Jeong In, Lee;Sim, Namkoong
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.577-586
    • /
    • 2022
  • Stress granules (SGs) are stress-induced subcellular compartments, which carry out a particular function to cope with stress. These granules protect cells from stress-related damage and cell death through dynamic sequestration of numerous ribonucleoproteins (RNPs) and signaling proteins, thereby promoting cell survival under both physiological and pathological condition. During tumorigenesis, cancer cells are repeatedly exposed to diverse stress stimuli from the tumor microenvironment, and the dynamics of SGs is often modulated due to the alteration of gene expression patterns in cancer cells, leading to tumor progression as well as resistance to anticancer treatment. In this mini review, we provide a brief discussion about our current understanding of the fundamental roles of SGs during physiological stress and the effect of dysregulated SGs on cancer cell fitness and cancer therapy.

The role of myokines in cancer: crosstalk between skeletal muscle and tumor

  • Se-Young Park;Byeong-Oh Hwang;Na-Young Song
    • BMB Reports
    • /
    • 제56권7호
    • /
    • pp.365-373
    • /
    • 2023
  • Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscle-to-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer.

Vemurafenib Enhances NK cell Expansion and Tumor-killing Activity for Cancer Immunotherapy

  • Min Hwa Shin
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.371-375
    • /
    • 2023
  • Natural killer (NK) cells are innate immune cells and play important roles as the first immune cells to recognize and kill cancer. In patients with advanced and terminal cancer, NK cells are often inactivated, suggesting that NK cells may play important roles in cancer treatment. In particular, the proportion of NK cells among immune cells infiltrating tumor tissues is often low, which suggests that NK cells do not survive in tumor microenvironment (TME). In order to overcome these hurdles of NK cells in cancer treatment, it is critical to develop strategies that enhance the proliferation and cytolytic activity of NK cells. We applied Vemurafenib to NK cells and measured the degree of NK cell proliferation and functional activation. We obtained unexpected results of increased NK cell numbers and anti-tumor activity after Vemurafenib treatment. Although further investigation is required to uncover the detailed mechanisms, our results suggest that Vemurafenib is a promising candidate to increase the efficacy of cancer immunotherapy using NK cells.

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Current Development Status of Cytokines for Cancer Immunotherapy

  • Kyoung Song
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.13-24
    • /
    • 2024
  • Cytokines influence the overall cancer immune cycle by triggering tumor antigen expression, antigen presenting, immune cell priming and activation, effector immune cell recruitment and infiltration to cancer, and cancer killing in the tumor microenvironment (TME). Therefore, cytokines have been considered potential anti-cancer immunotherapy, and cytokine-based anti-cancer therapies continue to be an active area of research and development in the field of cancer immunotherapy, with ongoing clinical trials exploring new strategies to improve efficacy and safety. In this review, we examine past and present clinical developments for major anticancer cytokines, including interleukins (IL-2, IL-15, IL-12, IL-21), interferons, TGF-beta, and GM-CSF. We identify the current status and changes in the technology platform being applied to cytokine-based immune anti-cancer therapeutics. Through this, we discuss the opportunities and challenges of cytokine-based immune anti-cancer treatments in the current immunotherapy market and suggest development directions to enhance the clinical use of cytokines as immuno-anticancer drugs in the future.

Metabolic Challenges in Anticancer CD8 T Cell Functions

  • Andrea M. Amitrano;Minsoo Kim
    • IMMUNE NETWORK
    • /
    • 제23권1호
    • /
    • pp.9.1-9.15
    • /
    • 2023
  • Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.

Immune Evasion of G-CSF and GM-CSF in Lung Cancer

  • Yeonhee Park;Chaeuk Chung
    • Tuberculosis and Respiratory Diseases
    • /
    • 제87권1호
    • /
    • pp.22-30
    • /
    • 2024
  • Tumor immune evasion is a complex process that involves various mechanisms, such as antigen recognition restriction, immune system suppression, and T cell exhaustion. The tumor microenvironment contains various immune cells involved in immune evasion. Recent studies have demonstrated that granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce immune evasion in lung cancer by modulating neutrophils and myeloid-derived suppressor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly their role in immune evasion in lung cancer. In addition, their effects on programmed death-ligand 1 expression and clinical implications are discussed.