• Title/Summary/Keyword: MICP

Search Result 37, Processing Time 0.019 seconds

Experimental study on solidification of uranium tailings by microbial grouting combined with electroosmosis

  • Jinxiang Deng;Mengjie Li;Yakun Tian;Lingling Wu;Lin Hu;Zhijun Zhang;Huaimiao Zheng
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4527-4542
    • /
    • 2023
  • The present microbial reinforcement of rock and soil exhibits limitations, such as uneven reinforcement effectiveness and low calcium carbonate generation rate, resulting in limited solidification strength. This study introduces electroosmosis as a standard microbial grouting reinforcement technique and investigates its solidification effects on microbial-reinforced uranium tailings. The most effective electroosmosis effect on uranium tailings occurs under a potential gradient of 1.25 V/cm. The findings indicate that a weak electric field can effectively promote microbial growth and biological activity and accelerate bacterial metabolism. The largest calcium carbonate production occurred under the gradient of 0.5 V/cm, featuring a good crystal combination and the best cementation effect. Staged electroosmosis and electrode conversion efficiently drive the migration of anions and cations. Under electroosmosis, the cohesion of uranium tailings reinforced by microorganisms increased by 37.3% and 64.8% compared to those reinforced by common microorganisms and undisturbed uranium tailings, respectively. The internal friction angle is also improved, significantly enhancing the uniformity of reinforcement and a denser and stronger microscopic structure. This research demonstrates that MICP technology enhances the solidification effects and uniformity of uranium tailings, providing a novel approach to maintaining the safety and stability of uranium tailings dams.

Evaluation of Hydrogeologic Seal Capacity of Mudstone in the Yeongil Group, Pohang Basin, Korea: Focusing on Mercury Intrusion Capillary Pressure Analysis (포항분지 영일층군 이암층의 수리지질학적 차폐능 평가: 수은 모세관 압입 시험의 결과 분석을 중심으로)

  • Kim, Seon-Ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • Geological CO2 sequestration is a global warming response technology to limit atmospheric emissions by injecting CO2 captured on a large scale into deep geological formations. The presented results concern mineralogical and hydrogeological investigations (FE-SEM, XRD, XRF, and MICP) of mudstone samples from drilling cores of the Pohang basin, which is the research area for the first demonstration-scale CO2 storage project in Korea. They aim to identify the mineral properties of the mudstone constituting the caprock and to quantitatively evaluate the hydrogeologic sealing capacity that directly affects the stability and reliability of geological CO2 storage. Mineralogical analysis showed that the mudstone samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, clay minerals, etc. Mercury intrusion capillary pressure analysis also showed that the samples generally had uniform particle configurations and pore distribution and there was no distinct correlation between the estimated porosity and air permeability. The allowable CO2 column heights based on the estimated pore-entry pressures and breakthrough pressures were found to be significantly higher than the thickness of the targeting CO2 injection layer. These results showed that the mudstone layers in the Yeongil group, Pohang basin, Korea have sufficient sealing capacity to suppress the leakage of CO2 injected during the demonstration-scale CO2 storage project. It should be noticed, however, that the applicability of results and analyses in this study is limited by the lack of available samples. For rigorous assessment of the sealing efficiency for geological CO2 storage operations, significant efforts on collection and multi-aspect evaluation for core samples over entire caprock formations should be accompanied.

Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber (PVA섬유를 혼합한 미생물 고결토의 공학적 특성)

  • Choi, Sun-Gyu;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.27-33
    • /
    • 2016
  • In this study, Polyvinyl alcohol (PVA) fiber was used to increase strength (unconfined compressive strength and tensile strength) of bio-cemented sand using microorganism. Ottawa sand was mixed with PVA fibers having three fiber contents (0, 0.4, and 0.8%). The fiber mixed sand was treated 14 times by using Microbially Induced Calcite Precipitation (MICP) which included culture (2 times per day) during 7 days to improve its engineering properties. The Bacillus Sporosarcina pasteurrii (Bacillus sp.) was used for urease activity. The specimen was prepared as a cylindrical specimen of 5 cm in diameter and 10 cm in height. Unconfined compressive strength and tensile strength were measured after cementation. Moreover, calcium carbonate content and SEM analyses were performed with a piece of sample. An average value of unconfined compressive strength increased and then slightly decreased but an average value of tensile strength ratio increased with increasing carbonate content the in same condition. Unconfined compressive strength and tensile strength increased about 30% and 160%, respectively. A strength ratio of unconfined compressive strength to tensile strength representing the brittleness decreased from 8 to 4 when fiber content increased from 0.0 to 0.8%. Such bio-cemented sand can be applied into slope area to prevent its shear failure or increase its tensile strength.

Magnetized inductively coupled plasma etching of GaN in $Cl_2/BCl_3$ plasmas

  • Lee, Y.H.;Sung, Y.J.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.49-49
    • /
    • 1999
  • In this study, $Cl_2/BCI_3$ magnetized inductively coupled plasmas (MICP) were used to etch GaN and the effects of magnetic confinements of inductively coupled plasmas on the GaN etch characteristics were investigated as a function of $Cl_2/BCI_3$. Also, the effects of Kr addition to the magnetized $Cl_2/BCI_3$ plasmas on the GaN etch rates were investigated. The characteristics of the plasmas were estimated using a Langmuir probe and quadrupole ma~s spectrometry (QMS). Etched GaN profiles were observed using scanning electron microscopy (SEM). The small addition of $Cl_2/BCI_3$ (10-20%) in $Cl_2$ increased GaN etch rates for both with and without the magnetic confinements. The application of magnetic confinements to the $Cl_2/BCI_3$ inductively coupled plasmas (ICP) increased GaN etch rates and changed the $Cl_2/BCI_3$ gas composition of the peak GaN etch rate from 10% $BCI_3$ to 20% $BCI_3$. It also increased the etch selectivity over photoresist, while slightly reducing the selectivity over $Si0_2$. The application of the magnetic field significantly increased positive $BCI_2{\;}^+$ measured by QMS and total ion saturation current measured by the Langmuir probe. Other species such as CI, BCI, and CI+ were increased while species such as $BCl_2$ and $BCI_3$ were decreased with the application of the magnetic field. Therefore, it appears that the increase of GaN etch rate in our experiment is related to the increased dissociative ionization of $BCI_3$ by the application of the magnetic field. The addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition (80% $Cl_2/$ 20% $BCI_3$) with the magnets increased the GaN etch rate about 60%. More anisotropic GaN etch profile was obtained with the application of the magnetic field and a vertical GaN etch profile could be obtained with the addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition with the magnets.

  • PDF

Geochemical Modeling on Water-caprock-gas Interactions within a CO2 Injected in the Yeongil Group, Pohang Basin, Korea (포항분지 영일층군 내 이산화탄소 주입에 의한 물-덮개암-가스 반응에 대한 지화학적 모델링)

  • Kim, Seon-ok;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.69-76
    • /
    • 2021
  • This study is to identify the mineralogical properties of caprock samples from drilling cores of the Pohang basin, which is the research area for the demonstration-scale CO2 storage project in Korea. The interaction of water-rock-gas that can occur due to CO2 injection was identified using geochemical modeling. Results of mineralogical studies, together with petrographic data of caprock and data on the physicochemical parameters of pore water were used for geochemical modeling. Modelling was carried out using the The Geochemist's Workbench 14.0.1 geochemical simulator. Two steps of modeling enabled prediction of immediate changes in the caprocks impacted by the first stage of CO2 injection and the assessment of long-term effects of sequestration. Results of minerlaogical analysis showed that the caprock samples are mainly composed of quartz, K-feldspar, plagioclase and a small amount of pyrite, calcite, kaolinite and montmollonite. After the injection of carbon dioxide, the porosity of the caprock increased due to the dissolution of calcite, and dawsonite and chalcedony were precipitated as a result of the dissolution of albite and k-feldspar. In the second step after the injection was completed, the precipitation of dawsonite and chalcedony occurred as a result of dissolution of calcite and albite, and the pH was increased due to this reaction. Results of these studies are expected to be used as data to quantitatively evaluate the efficiency of mineral trapping capture in long-term storage of carbon dioxide.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.