• Title/Summary/Keyword: MICP

Search Result 38, Processing Time 0.035 seconds

Isolation and Characterization of Calcite Forming Bacteria from Various Environments in Korea (다양한 환경에서의 탄산칼슘 생성 균주 분리 및 특성 연구)

  • Kim, YongGyeong;Kang, Chang-Ho;Oh, Soo Ji;So, Jae-Seong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.323-327
    • /
    • 2014
  • Microbially induced calcite precipitation is a naturally occurring biological process in which microbes produce calcite on the surface of the microorganisms by urease activity. In order to collect calcite forming bacteria (CFB) in Korea, we isolated 343 putative CFB strains from various environments over three year period (2011~2013) and selected 100 CFB strains. Average of calcite productivity was 10.56 mg/mL. And average of ammonium concentration by urease activity was $8.00{\mu}M$. Two useful CFB strains of the others were analyzed by 16S rRNA and identified as Sporosarcina sp. and Viridibacillus arenosi. The CFB strains presented in this study are indigenous microorganisms in Korea and they are expected to be applicable to a variety of environments in the country.

A study on platinum dry etching using a cryogenic magnetized inductively coupled plasma (극저온 자화 유도 결합 플라즈마를 이용한 Platinum 식각에 관한 연구)

  • 김진성;김정훈;김윤택;황기웅;주정훈;김진웅
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.476-481
    • /
    • 1999
  • Characteristics of platinum dry etching were investigated in a cryogenic magnetized inductively coupled plasma (MICP). The problem with platinum etching is the redeposition of sputtered platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned platinum structure produces feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape [1]. The main object of this study was to investigate a new process technology for fence-free Pt etching As bias voltage increased, the height of fence was reduced. In cryogenic etching, the height of fence was reduced to 20% at-$190^{\circ}C$ compared with that of room temperature, however the etch profile was not still fence-free. In Ar/$SF_6$ Plasma, fence-free Pt etching was possible. As the ratio of $SF_6$ gas flow is more than 14% of total gas flow, the etch profile had no fence. Chemical reaction seemed to take place in the etch process.

  • PDF

Isolation and Characterization of Ureolytic Bacteria for Biosequestration of Strontium (스트론튬 격리화를 위한 요소 분해 박테리아의 분리 및 특성 연구)

  • Choi, Jae-Ho;Kang, Chang-Ho;Han, Sang-Hyun;Kwak, Dae Young;Oh, SooJi;So, Jae-Seong
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.165-169
    • /
    • 2013
  • In this study, 52 ureolytic bacterial strains were newly isolated from various environments. From these, 2 strains (TB-15 and TB-22) were selected based on their high urease activity. XRD spectra clearly showed presence of various sequestration products such as calcite and strontianite in samples. TB-22 showed 20~30% higher survivability upon Sr concentration (20 mM) than Sporosarcina pasteurii KCTC 3558. TB-15 and TB-22 showed 80~90% higher survivability at pH 6 than S. pasteurii. The results demonstrated that the 2 isolates colud be good candidates for the bioremediation of Sr contaminated sites.

450 mm Wafer 가공을 위한 자화유도결합플라즈마 시뮬레이션 연구

  • Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.411-411
    • /
    • 2010
  • Cavity mode Whistler wave를 사용하는 자화유도결합플라즈마 (Magnetized Inductively Coupled Plasma, MICP)의 제반 특성을 비등방성 수송계수를 가지는 Drift-Diffusion 근사, 에너지 보존 방정식 및 유도전자계를 self-consistent 하게 고려하여 계산하였다. 이러한 접근법은 비충돌성 전자가열현상을 고려하지 못하는 단점에도 불구하고, 반도체 장비설계에 필수적인 전자온도, 밀도, 플라즈마 전위, 시스템의 임피던스 특성에 대한 경향성 파악에 매우 유용하다. 뿐만 아니라 전자밀도분포가 공간내에 형성되는 R-wave mode에 미치는 영향을 분석할 수 있다. 직경 320 mm를 가지는 작은 반응기에서 시뮬레이션과 실험결과를 비교하여 본 모델링 방법의 타당성을 검증한 후, 450 mm wafer가공에 적합한 대면적 플라즈마 반응기에서 플라즈마 특성을 연구하였다. 수 mTorr의 공정압력에서 약 10 Gauss전후의 약한 자장이 인가됨으로서 반경방향의 전자밀도 균일성이 대폭 향상되었다. 플라즈마 및 안테나의 대면적화에 수반되는 높은 Q값이 자장의 인가로 큰 폭으로 감소함으로서 임피던스메칭의 안정성이 비약적으로 개선되었고 전력전달 효율 또한 크게 증가함을 알 수 있었다. 본 연구 결과는 차세대 450 mm 반도체 공정장비의 개발에 있어 자화유도결합플라즈마가 매우 유용하게 사용될 수 있음을 보여준다.

  • PDF

Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions

  • Hang, Lei;Gao, Yufeng;He, Jia;Chu, Jian
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.497-505
    • /
    • 2019
  • Biocementation based on the microbially induced calcite precipitation (MICP) process is a novel soil improvement method. Biocement can improve significantly the properties of soils by binding soil particles to increase the shear strength or filling in the pores to reduce the permeability of soil. In this paper, results of triaxial consolidated undrained (CU) tests and constant shear drained (CSD) tests on biocemented Ottawa sand are presented. In the CU tests, the biocemented sand had more dilative behaviour by showing a higher stress-strain curves and faster pore pressure reducing trends as compared with their untreated counterparts. In the CSD tests, the stress ratio q/p' at which biocemented sand became unstable was higher than that for untreated sands, implying that the biocementation will improve the stability of sand to water infiltration or liquefaction.

Full mouth rehabilitation with vertical dimension increase in patient with excessive worn dentition due to parafunctional mandibular movements: a case report (비기능 하악 운동으로 과도하게 마모된 치아를 가진 환자에서 수직 고경 증가를 동반한 전악 수복 증례보고)

  • JiHoon Park;Seong-A Kim;SunYoung Yim;JooHyuk Bang;HeeWon Jang;YongSang Lee;KeunWoo Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.113-122
    • /
    • 2024
  • The gradual teeth wear with age is a natural phenomenon, but excessive wear beyond physiological levels can lead to vertical dimension loss, occlusal imbalance, temporomandibular joint disorders, and periodontal disease. In such cases, prosthodontic restoration becomes necessary emphasizing the importance of appropriate vertical dimension increase and stable occlusion in central relation (CR). In this case, a 74-year-old patient with clenching and grinding habit had severe teeth wear and after assessing interocclusal distance, wear degree, pronunciation, and facial profile, it was decided to perform full-mouth fixed prosthesis restoration with a 4 mm vertical dimension increase. And the significantly displaced Maximum Intercuspal Position (MICP) caused by parafunctional movements was re-established as a stable mutually protective occlusal relationship at centric relation and after a successful 4 months adaptation to provisional restorations, the final prosthesis was fabricated. During 4months of observation periods, stable occlusion in central relation and mutual protection occlusal relationships were maintained and the patient was satisfied with function and aesthetics, leading to this report.

Biocementation via soybean-urease induced carbonate precipitation using carbide slag powder derived soluble calcium

  • Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.

Characteristics of soybean urease induced CaCO3 precipitation

  • Zhu, Liping;Lang, Chaopeng;Li, Bingyan;Wen, Kejun;Li, Mingdong
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.281-289
    • /
    • 2022
  • Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.

Mechanical Behaviour of Bio-grouted Coarse-grained Soil: Discrete Element Modelling

  • Wu, Chuangzhou;Jang, Bo-An;Jang, Hyun-Sic
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.383-391
    • /
    • 2019
  • Bio-grouting based on microbial-induced calcite precipitation (MICP) is recently emerging as a novel and environmentally friendly technique for improvement of coarse-grained ground. To date, the mechanical behaviour of bio-grouted coarse-grained soil with different calcite contents and grain sizes still remains poorly understood. The primary objective of this study is to investigate the influence of calcite content on the mechanical properties of bio-grouted coarse-grained soil with different grain sizes. This is achieved through an integrated study of uniaxial loading experiments of bio-grouted coarse-grained soil, 3D digitization of the grains in conjunction with discrete element modelling (DEM). In the DEM model, aggregates were represented by clump logic based on the 3D morphology digitization of the typical coarse-grained aggregates while the CaCO3 was represented by small-sized bonded particle model. The computed stress-strain relations and failure patterns of the bio-grouted coarse-grained soil were validated against the measured results. Both experimental and numerical investigation suggest that aggregate sizes and calcite content significantly influence the mechanical behaviour of bio-cemented aggregates. The strength of the bio-grouted coarse-grained soil increases linearly with calcite content, but decreases non-linearly with the increasing particle size for all calcite contents. The experimental-based DEM approach developed in this study also offers an optional avenue for the exploring of micro-mechanisms contributing to the mechanical response of bio-grouted coarse-grained soils.

레이저 유기 형광법을 이용한 자기장이 인가된 유도결합플라즈마의 전기장 특성 연구

  • Song, Jae-Hyeon;Kim, Hyeok;Jeong, Jae-Cheol;Hwang, Gi-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.474-474
    • /
    • 2010
  • 현재 반도체시장의 확장으로 인해서 기존의 300mm 웨이퍼에서 450mm의 웨이퍼를 사용하는 공정으로 변화하는 추세이다. 450mm 웨이퍼로 대면적 화되면서 기존 300mm 공정 때보다 훨씬 효율적인 플라즈마 소스 즉, 고밀도이고, 고균등화(high uniformity) 플라즈마 소스를 필요로 한다. 본 논문에서는 고밀도 플라즈마 소스인 유도 결합형 플라즈마(Inductively Coupled Plasma ; ICP)에 축 방향의 약한 자기장을 인가시킨 자화된 유도결합형 플라즈마(Magnetized Inductively Coupled Plasma : MICP)[1]를 제안하여 기존 ICP와의 차이점을 살펴보았다. 실험 방법으로 레이저 유기 형광법(Laser Induced Fluorescence : LIF)[2]을 이용하여 플라즈마 쉬스(Sheath) 내의 전기장을 외부 자기장의 변화에 따라 높이별로 측정하고 그 결과로부터 쉬스의 전기적 특성을 살펴보았다. 플라즈마의 특성상 탐침이나 전극에 전압을 인가하면 그 주위로 디바이 차폐(Debye Shielding)현상이 일어나서 플라즈마 왜곡이 일어난다. 그렇기에 플라즈마, 특히 플라즈마 쉬스의 특성을 파악하기 위해서 레이저라는 기술을 사용하였다. 레이저는 고가의 장비이고 그 사용에 많은 경험지식(know-how)를 필요로 하지만 플라즈마를 왜곡시키지 않고, 플라즈마의 밀도, 온도, 전기장 등 많은 상수(parameter)들을 얻어 낼 수 있다. 또한 3차원적으로 높은 분해능을 가지고 있는 장점이 있다. 강한 전기장이 있는 곳에서 입자들의 고에너지 준위가 전기장의 세기에 비례하여 분리되는 Stark effect[3] 이론을 이용하여 플라즈마 쉬스내의 전기장을 측정하였다. 실험은 헬륨가스 700mTorr 압력에서 이루어졌다. 기판의 파워를 50W에서 300W까지 변화시키면서 기판에 생기는 쉬스의 전기장의 변화를 살펴보았고, 자기장을 인가한 후 동일한 실험을 하여 자기장의 유무에 따른 플라즈마 쉬스의 전기장 변화를 살펴보았다. 실험결과 플라즈마 쉬스의 전기장의 변화는 기판의 파워와 플라즈마 밀도에 크게 의존함을 알았다. 기판의 파워가 커질수록 쉬스의 전기장은 커지고, 기판에 생기는 Self Bias Voltage역시 음의 방향으로 커짐을 확인 하였다. 또한 자기장을 걸어주었을 경우 쉬스의 두께가 얇아짐으로써 플라즈마의 밀도가 증가했음을 확인 할 수 있었다.

  • PDF