Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.3.281

Characteristics of soybean urease induced CaCO3 precipitation  

Zhu, Liping (School of Water Resources and Environmental Engineering, East China University oftechnology)
Lang, Chaopeng (Chongqing Wanzhou District Housing Management Center)
Li, Bingyan (School of Civil and Architectural Engineering, East China University of Technology)
Wen, Kejun (Department of Civil and Environmental Engineering, Jackson State University)
Li, Mingdong (School of Civil and Architectural Engineering, East China University of Technology)
Publication Information
Geomechanics and Engineering / v.31, no.3, 2022 , pp. 281-289 More about this Journal
Abstract
Bio-CaCO3 is a blowout environment-friendly materials for soil improvement and sealing of rock fissures. To evaluate the chemical characteristics, shape, size and productivity of soybean urease induced CaCO3 precipitates (SUICP), experimental studies were conducted via EDS, XRD, FT-IR, TGA, BET, and SEM. Also, the conversion rate of SUICP reaction at different time were determined and analyzed. The Bio-CaCO3 product obtained by SUICP is comprehensively judged as calcite based on the results of EDS, XRD and FT-IR. The SUICP calcite precipitates are detected as spherical or ellipsoidal particles 3-6 ㎛ in diameter with nanoscale pores on their surface, and this morphology is novel. The median secondary particle size d50 is 39-88 ㎛, indicating the agglomeration of the primary calcite particles. The Bio-calcite decomposes at 650-780℃, representing a medium thermal stability. The conversion rate of SUICP reaction can reach 80% in 24h, which is much more efficient than microbially induced CaCO3 precipitation. These results reveal the knowledges of SUICP, and further direct its engineering applications. Moreover, we show an economic channel to obtain porous spherical calcite.
Keywords
$CaCO_3$; calcite; calcium carbonate; EICP; MICP; morphology; urease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Xiao, Y., Stuedlein, A.W., He, X., Han, F., Evans, T.M., Pan, Z. and Van Paassen, L. (2021), "Lateral responses of a model pile in biocemented sand", Int. J. Geomech., 21(11), 06021027. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002179.   DOI
2 Xu, J., Zhang, T., Jiang, Y., Yang, D., Qiu, F., Chen, Q. and Yu, Z. (2020), "Preparation of self-healing acrylic copolymer composite coatings for application in protection of paper cultural relics", Polymer Eng. Sci., 60(2), 288-296. https://doi.org/10.1002/pen.25282.   DOI
3 Xu, X., Guo, H., Li, M. and Deng, X. (2021), "Bio-cementation improvement via CaCO3 cementation pattern and crystal polymorph: A review", Constr. Buildi. Mater., 297, 123478. https://doi.org/10.1016/J.CONBUILDMAT.2021.123478.   DOI
4 Yang, Y., Li, M., Tao, X., Zhang, S., He, J., Zhu, L. and Wen, K. (2022), "The effect of nucleating agents on enzyme-induced carbonate precipitation and corresponding microscopic mechanisms", Materials, 15(17), 5814. https://doi.org/10.3390/MA15175814.   DOI
5 Denisenko, Y.G., Atuchin, V.V., Molokeev, M.S., Sedykh, A.E., Khritokhin, N.A., Aleksandrovsky, A.S. and Muller-Buschbaum, K. (2022), "Exploration of the crystal structure and thermal and spectroscopic properties of monoclinic praseodymium sulfate Pr2 (SO4)3", Molecules, 27(13), 3966. https://doi.org/10.3390/molecules27133966.   DOI
6 Li, L., Yang, Y., Lv, Y., Yin, P. and Lei, T. (2020), "Porous calcite CaCO3 microspheres: Preparation, characterization and release behavior as doxorubicin carrier", Colloids Surfaces B: Biointerfaces, 186, 110720. https://doi.org/10.1016/j.colsurfb.2019.110720.   DOI
7 Zhao, X., Feng, Q., Li, J. and Peng J. (2019), "Research of influences of temperature on amount of microbially induced carbonate precipitation", Ind. Constr., 49(11), 88-92+112. https://doi.org/10.13204/j.gyjz201911015   DOI
8 Zhao, L., Zhang, Y., Miao, Y. and Nie, L. (2016), "Controlled synthesis, characterization and application of hydrophobic calcium carbonate nanoparticles in PVC", Powder Technol., 288, 184-190. https://doi.org/10.1016/j.powtec.2015.11.001.   DOI
9 Feoktistova, N.A., Vikulina, A.S., Balabushevich, N.G., Skirtach, A.G. and Volodkin, D. (2020), "Bioactivity of catalase loaded into vaterite CaCO3 crystals via adsorption and co-synthesis", Mater. Design, 185, 108223. https://doi.org/10.1016/j.matdes.2019.108223.   DOI
10 Liu, S., Du, K., Huang, W., Wen, K., Amini, F. and Li, L. (2021), "Improvement of erosion-resistance of bio-bricks through fiber and multiple MICP treatments", Constr. Build. Mater., 271, 121573. https://doi.org/10.1016/J.CONBUILDMAT.2020.121573.   DOI
11 Qian, C., Ren, X., Rui, Y. and Wang, K. (2021a), "Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species", Biochem. Eng. J., 176, 108180. https://doi.org/10.1016/J.BEJ.2021.108180.   DOI
12 Qian, C., Zheng, T., Zhang, X. and Su, Y. (2021b). "Application of microbial self-healing concrete: Case study", Constr. Build. Mater., 290, 123226. https://doi.org/10.1016/J.CONBUILDMAT.2021.123226.   DOI
13 Almajed, A., Abbas, H., Arab, M., Alsabhan, A., Hamid, W. and Al-Salloum, Y. (2020), "Enzyme-Induced Carbonate Precipitation (EICP)-Based methods for ecofriendly stabilization of different types of natural sands", J. Cleaner Production, 274, 122627. https://doi.org/10.1016/j.jclepro.2020.122627.   DOI
14 Yuan, H., Ren, G., Liu, K., Zheng, W. and Zhao, Z. (2020), "Experimental study of EICP combined with organic materials for silt improvement in the yellow river flood area", Appl. Sci., 10(21), 7678. https://doi.org/10.3390/APP10217678.   DOI
15 Zou, Z., Habraken, W.J., Matveeva, G., Jensen, A.C., Bertinetti, L., Hood, M.A. and Fratzl, P. (2019), "A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate", Science, 363(6425), 396-400. https://doi.org/10.1126/science.aav0210.   DOI
16 Gao, Y., He, J., Tang, X. and Chu, J. (2019), "Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil", Soils Found., 59(5), 1631-1637. https://doi.org/10.1016/j.sandf.2019.03.014.   DOI
17 He, J., Gao, Y., Gu, Z., Chu, J. and Wang, L. (2020), "Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand", J. Mater. Civil Eng., 32(5), 04020071. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003100.   DOI
18 Ren, L., Zhang, Q., Zhu, W., Li, Q. and Mao, X. (2015), "Biomimetic synthesis of CaCO3 microrings", J. Synthetic Crystals, 44(1), 250-255. https://doi.org/10.16553/j.cnki.issn1000-985x.2015.01.049.   DOI
19 Saulat, H., Cao, M., Khan, M.M., Khan, M., Khan, M.M. and Rehman, A. (2020), "Preparation and applications of calcium carbonate whisker with a special focus on construction materials", Constr. Build. Mater., 236, 117613. https://doi.org/10.1016/j.conbuildmat.2019.117613.   DOI
20 Lai, Y., Chen, L., Bao, W., Ren, Y., Gao, Y., Yin, Y. and Zhao, Y. (2015), "Glycine-mediated, selective preparation of monodisperse spherical vaterite calcium carbonate in various reaction systems", Crystal Growth Design, 15(3), 1194-1200. https://doi.org/10.1021/cg5015847.   DOI
21 Kim, S. and Park, C.B. (2010), "Dopamine-induced mineralization of calcium carbonate vaterite microspheres", Langmuir, 26(18), 14730-14736. https://doi.org/10.1021/la1027509.   DOI
22 He, J., Fang, C., Hang, L., Qi, Y., Mao, X., Yan, B. and Gao, Y. (2021), "Enzyme induced carbonate precipitation for soil internal erosion control under water seepage", Geomech. Eng., 26(3), 289-299. https://doi.org/10.12989/gae.2021.26.3.289.   DOI
23 Islam, K.N., Bakar, M.Z.B.A., Ali, M.E., Hussein, M.Z.B., Noordin, M.M., Loqman, M.Y. and Hashim, U. (2013), "A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells", Powder Technol., 235, 70-75. https://doi.org/10.1016/j.powtec.2012.09.041.   DOI
24 Javadi, N., Khodadadi, H., Hamdan, N. and Kavazanjian Jr, E. (2018), "EICP treatment of soil by using urease enzyme extracted from watermelon seeds", In IFCEE 2018, 115-124. https://doi.org/10.1061/9780784481592.012.   DOI
25 Kumar, D. and Ranade, R. (2021), "Development of strain-hardening cementitious composites utilizing slag and calcium carbonate powder", Constr. Build. Mater., 273, 122028. https://doi.org/10.1016/J.CONBUILDMAT.2020.122028.   DOI
26 Lee, S.W., Kim, Y.J., Lee, Y.H., Guim, H. and Han, S.M. (2016), "Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis", Mater. Design, 112, 367-373. https://doi.org/10.1016/j.matdes.2016.09.099.   DOI
27 Lei, Y. (2015), "Experimental synthesis and geological significance of calcium carbonate under control of different additives", Northwest University.
28 Li, M., Li, L., Ogbonnaya, U., Wen, K., Tian, A. and Amini, F. (2016), "Influence of fiber addition on mechanical properties of MICP-treated sand", J. Mater. Civil Eng., 28(4), 04015166. https://doi.org/10.1061/9780784480472.002.   DOI
29 Elsharkawy, S. and Mata, A. (2018), "Hierarchical biomineralization: from nature's designs to synthetic materials for regenerative medicine and dentistry", Adv. Health. Mater., 7(18), 1800178. https://doi.org/10.1002/adhm.201800178   DOI
30 Dyer, M. and Viganotti, M. (2016), "Oligotrophic and eutrophic MICP treatment for silica and carbonate sands", Bioinspired, Biomimetic Nanobiomater., 6(3), 168-183. https://doi.org/10.1680/jbibn.16.00002   DOI
31 Chen, T., Shi, P., Li, Y., Duan, T., Yu, Y., Li, X. and Zhu, W. (2018), "Biomineralization of varied calcium carbonate crystals by the synergistic effect of silk fibroin/magnesium ions in a microbial system", Cryst. Eng. Comm., 20(17), 2366-2373. https://doi.org/10.1039/c8ce00099a.   DOI
32 Bushuev, Y.G., Finney, A.R. and Rodger, P.M. (2015), "Stability and structure of hydrated amorphous calcium carbonate", Crystal Growth Design, 15(11), 5269-5279. https://doi.org/10.1021/acs.cgd.5b00771.   DOI
33 Carmona, J.P., Oliveira, P.J.V. and Lemos, L.J. (2016), "Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation", Procedia Eng., 143, 1301-1308. https://doi.org/10.1016/j.proeng.2016.06.144.   DOI
34 Chandra, A. and Ravi, K. (2021), "Application of enzyme-induced carbonate precipitation (EICP) to improve the shear strength of different type of soils", In Problematic soils and geoenvironmental concerns (pp. 617-632). Springer, Singapore. https://doi.org/10.1007/978-981-15-6237-2_52.   DOI
35 Cui, M.J., Lai, H.J., Hoang, T. and Chu, J. (2021), "One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement", Acta Geotechnica, 16(2), 481-489. https://doi.org/10.1007/s11440-020-01043-2.   DOI
36 Nam, I.H., Chon, C.M., Jung, K.Y., Choi, S.G., Choi, H. and Park, S.S. (2015), "Calcite precipitation by ureolytic plant (Canavalia ensiformis) extracts as effective biomaterials", KSCE J. Civil Eng., 19(6), 1620-1625. https://doi.org/10.1007/s12205-014-0558-3.   DOI
37 Li, M., Wen, K., Li, Y. and Zhu, L. (2018), "Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment", Geomicrobio. J., 35(1), 15-22. https://doi.org/10.1080/01490451.2017.1303553.   DOI
38 Liu, Y., Chen, Y., Huang, X. and Wu, G. (2017), "Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch", Mater. Sci. Eng., 79, 457-464. https://doi.org/10.1016/j.msec.2017.05.085.   DOI
39 Morandeau, A., Thiery, M. and Dangla, P. (2014), "Investigation of the carbonation mechanism of CH and CSH in terms of kinetics, microstructure changes and moisture properties", Cement Concrete Res., 56, 153-170. https://doi.org/10.1016/j.cemconres.2013.11.015.   DOI
40 Palmqvist, N.M., Nedelec, J.M., Seisenbaeva, G.A. and Kessler, V. G. (2017), "Controlling nucleation and growth of nano-CaCO3 via CO2 sequestration by a calcium alkoxide solution to produce nanocomposites for drug delivery applications", Acta Biomaterialia, 57, 426-434. https://doi.org/10.1016/j.actbio.2017.05.006.   DOI
41 Pan, X., Chu, J., Yang, Y. and Cheng, L. (2020), "A new biogrouting method for fine to coarse sand", Acta Geotechnica, 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0.   DOI
42 Xiao, Y., Stuedlein, A.W., Ran, J., Evans, T.M., Cheng, L., Liu, H. and Chu, J. (2019), "Effect of particle shape on strength and stiffness of biocemented glass beads", J. Geotech. Geoenviron. Eng., 145(11), 06019016.https://doi.org/10.1061/(ASCE)GT.19435606.0002165.   DOI
43 Van Paassen, L.A., Harkes, M.P., Van Zwieten, G.A., Van der Zon, W.H., Van der Star, W.R.L. and Van Loosdrecht, M.C.M. (2009), "Scale up of BioGrout: a biological ground reinforcement method", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, 1-4, 2328-2333. https://doi.org/10.3233/978-1-60750-031-5-2328.   DOI
44 Deepika, S., Hait, S. K., Christopher, J., Chen, Y., Hodgson, P. and Tuli, D.K. (2013), "Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents", Powder Technol., 235, 581-589. https://doi.org/10.1016/j.powtec.2012.11.015.   DOI
45 Park, J. and Choi, B.Y. (2022), "Feasibility study of enzyme-induced calcium carbonate precipitation (EICP) for CO2 leakage prevention", Geosci. J., 26(2), 279-288. https://doi.org/10.1007/S12303-021-0033-3.   DOI
46 Wen, K., Bu, C., Liu, S., Li, Y. and Li, L. (2018), "Experimental investigation of flexure resistance performance of bio-beams reinforced with discrete randomly distributed fiber and bamboo", Constr. Build. Mater., 176, 241-249. https://doi.org/10.1016/j.conbuildmat.2018.05.032.   DOI
47 Wen, K., Li, Y., Amini, F. and Li, L. (2020), "Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate", Acta Geotechnica, 15(1), 17-27. https://doi.org/10.1007/s11440-019-00899-3.   DOI
48 Wu, C., Chu, J., Wu, S., Cheng, L. and van Paassen, L.A. (2019), "Microbially induced calcite precipitation along a circular flow channel under a constant flow condition", Acta Geotechnica, 14(3), 673-683.https://doi.org/10.1007/s11440-018-0747-1.   DOI
49 Wu, L., Miao, L., Sun, X., Chen, R. and Wang, C. (2020), "Experimental study on solidifying sand using plant-derived urease induced calcium carbonate precipitation", Chinese J. Geotech. Eng., 42(4), 714-720. https://doi.org/10.11779/CJGE202004014.   DOI
50 Xiao, Y., Stuedlein, A.W., Pan, Z., Liu, H., Matthew Evans, T., He, X. and Van Paassen, L. A. (2020), "Toe-bearing capacity of precast concrete piles through biogrouting improvement", J. Geotech. Geoenviron. Eng., 146(12). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002404.   DOI
51 Choi, S.G., Chu, J., Brown, R.C., Wang, K. and Wen, Z. (2017), "Sustainable biocement production via microbially induced calcium carbonate precipitation: Use of limestone and acetic acid derived from pyrolysis of lignocellulosic biomass", ACS Sustain. Chem. Eng., 5(6), 5183-5190. https://doi.org/10.1021/acssuschemeng.7b02137.   DOI
52 Aliotta, L., Cinelli, P., Coltelli, M.B. and Lazzeri, A. (2019), "Rigid filler toughening in PLA-Calcium Carbonate composites: Effect of particle surface treatment and matrix plasticization", Eur. Polymer J., 113, 78-88. http://doi.org/10.1016/j.eurpolymj.2018.12.042.   DOI
53 Almajed, A., Lemboye, K., Arab, M.G. and Alnuaim, A. (2020), "Mitigating wind erosion of sand using biopolymer-assisted EICP technique", Soils Found., 60(2), 356-371. https://doi.org/10.1016/j.sandf.2020.02.011.   DOI
54 Bang, J.H., Jang, Y.N., Kim, W., Song, K.S., Jeon, C.W., Chae, S. C. and Lee, M.G. (2012), "Specific surface area and particle size of calcium carbonate precipitated by carbon dioxide microbubbles", Chem. Eng. J., 198, 254-260. https://doi.org/10.1016/j.cej.2012.05.081.   DOI
55 Chen, L., Shen, Y.H., Xie, A.J. and Cheng, Q.N. (2010), "Biological synthesis of calcite crystals using Scindapsus aureum petioles", J. Mater. Sci., 45(11), 2938-2943. https://doi.org/10.1007/s10853-010-4286-x.   DOI
56 Chen, Y. and Qian, C. (2021), "A new method for anti-efflorescence of mortar by bio-mineralization", Constr. Build. Mater., 290, 123261. https://doi.org/10.1016/J.CONBUILDMAT.2021.123261.   DOI
57 Cui, M.J., Zheng, J.J., Chu, J., Wu, C.C. and Lai, H.J. (2021), "Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand", Acta Geotechnica, 16(5), 1377-1389. https://doi.org/10.1007/s11440-020-01099-0.   DOI
58 Feng, J., Yang, F. and Qian, S. (2021), "Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification", Constr. Build. Mater., 269, 121249. https://doi.org/10.1016/j.conbuildmat.2020.121249.   DOI
59 Zhuravlev, Y.N. and Atuchin, V.V. (2020), "Comprehensive density functional theory studies of vibrational spectra of carbonates", Nanomater., 10(11), 2275. https://doi.org/10.3390/nano10112275.   DOI
60 Zhao, Q., Li, L., Li, C., Li, M., Amini, F. and Zhang, H. (2014), "Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease", J. Mater. Civil Eng., 26(12), 04014094. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013.   DOI
61 Song, J.Y., Sim, Y., Jang, J., Hong, W.T. and Yun, T.S. (2020), "Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression", Acta Geotechnica, 15(7), 1967-1980. https://doi.org/10.1007/s11440-019-00881-z.   DOI
62 Tao, H., He, Y. and Zhao, X. (2015), "Preparation and characterization of calcium carbonate-titanium dioxide core- shell (CaCO3@ TiO2) nanoparticles and application in the papermaking industry", Powder Technol., 283, 308-314. https://doi.org/10.1016/j.powtec.2015.05.039.   DOI
63 Trushina, D.B., Bukreeva, T.V. and Antipina, M.N. (2016), "Size-controlled synthesis of vaterite calcium carbonate by the mixing method: aiming for nanosized particles", Crystal Growth Design, 16(3), 1311-1319. https://doi.org/10.1021/acs.cgd.5b01422.   DOI
64 Wang, A., Li, J., Dong, Q., Wang, S., Jian, H., Wang, M. and Bai, S. (2019), "Preparation of microgels with ultrahigh payload of various hydrophilic and hydrophobic inorganic nanoparticle composites up to 92 wt%", ACS Appl. Mater. Interfaces, 11(4), 4408-4415. https://doi.org/10.1021/acsami.8b20089.   DOI
65 Wang, J., Kong, Y., Liu, F., Shou, D., Tao, Y. and Qin, Y. (2018), "Construction of pH-responsive drug delivery platform with calcium carbonate microspheres induced by chitosan gels", Ceramics Int., 44(7), 7902-7907. https://doi.org/10.1016/j.ceramint.2018.01.227.   DOI
66 Yang, J. and Shih, S.( 2010), "Preparation of high school CaCO3 for SO2 removal by absorption of CO2 in aqueous suspensions of Ca(OH)2", Powder Technol., 202, 101-110.   DOI