• Title/Summary/Keyword: MIC2

Search Result 990, Processing Time 0.024 seconds

A Study on the Antibacterial Activity of Chitosan on the MRSA by the Shake Flask Method and Modified Shake Flask Method (Shake Flask Method와 개량 Shake Flask Method에 의한 키토산의 MRSA 향균성 평가)

  • Choi, Jeong-Im;Jeon, Dong-Won
    • Fashion & Textile Research Journal
    • /
    • v.5 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • Water-insoluble chitosan with molecular weight of 2,000,000, 580,000, 80,000, and 40,000 and more than 90% of degree of deacetylation were prepared to test antibacterial activity of chitosan against a pathogenic bacteria, methicillin resistant Staphylococcus aureus (MRSA). As experimental method, the Shake Flask Method (SFM) and Modified Shake Flask Method (MSFM) were applicated. The anti-microbial activity of chitosan/acetic acid aqueous solution is consistent irrespective of Mw of chitosan. MIC value of SFM measurement was 0.2 ppm, and MIC value of modified SFM measurement was 25 ppm. But MIC value of chitosan/acetic add solution and chitosan treated cotton filter paper was equally 5 ppm. The antibacterial activities of chitosan were different in different test measurements employed. The antibacterial activities of chitosan/acetic acid solution and chitosan treated cotton filter paper were also different. Therefore, it needs to be pointed out that the test measurements of anti-microbial activity have some problems.

Antibacterial Activities of Essential Oil from Zanthoxylum schinifolium Against Food-Borne Pathogens (산초 정유성분의 식중독균에 대한 항균 활성)

  • Jang, Mi-Ran;Seo, Ji-Eun;Lee, Je-Hyuk;Kim, Gun-Hee
    • Korean journal of food and cookery science
    • /
    • v.26 no.2
    • /
    • pp.206-213
    • /
    • 2010
  • In this study, the antibacterial activities of essential oil from Zanthoxylum schinifolium against four Gram-positive bacteria and six Gram-negative bacteria were investigated. The antibacterial activity of the oils was determined using the agar-well diffusion assay, MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). In particular, essential oil from Z. schinifolium showed higher antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. Essential oil from Z. schinifolium displayed large inhibition zones especially against Bacillus cereus (31 mm). At concentrations between 0 and $20\;{\mu}g/mL$ the oils showed an antibacterial effect against both Gram-negative and Gram-positive bacteria. The minimum inhibitory concentration (MIC) values against nine bacteria ranged from 1.25 to $5\;{\mu}g/mL$. The minimum bactericidal concentration (MBC) values against eight bacterial ranged from 2.5 to $20\;{\mu}g/mL$, except Shigella sonnei. Furthermore, our finding on the antibacterial activities of essential oils from Zanthoxylum schinifolium validated the use of this plant for medical purposes.

Antimicrobial activities of ethanolic extracts of marine resources against Propionibacterium acnes (해양 유래 한약재의 여드름균에 대한 항균 효능 연구)

  • Park, Sook-Jahr;Park, Chan-Ik;Kim, Sang-Chan
    • The Korea Journal of Herbology
    • /
    • v.25 no.2
    • /
    • pp.65-70
    • /
    • 2010
  • Objectives : Biological activities of marine resources have been rarely evaluated compared with other herbal medicines. In the present study, we aimed to evaluate antimicrobial activities of aqueous and ethanolic extracts of five marine resources(Porphyra tenera, Laminariae Thallus, Sargassum, Ostreae Concha, Maliotidis Concha) against Propionibacterium acnes. Methods : Aqueous axtracts of five marine resources were prepared by decocting in tenfold tap water for 3 h. Etanolic extracts were obtained by extracting five marine resources with tenfold ethanol for 72 h at room temperature. The zone of growth inhibition and minimum inhibitory concentration (MIC) were determined against P. acnes after incubation for 48 h under anaerobic condition. Results : Ethanolic extracts of Porphyra tenera exhibited potent antimicrobial effects(MIC $62.5\;{\mu}g/m{\ell}$ against KCTC3320, MIC $31.25\;{\mu}g/m{\ell}$ against KCTC5527). However, all aqueous extracts tested had no effects on the growth inhibition of P. acnes. In addition, four ethanolic extracts except Porphyra tenera showed little inhibitory effect. Conclusions : These results indicate that ethanolic extracts of Porphyra tenera has antimicrobial activities against P. acnes and also warrant further development of Porphyra tenera extracts as a natural anti-acne agent.

Antimicrobial Effects of Ursolic Acid against Mutans Streptococci Isolated from Koreans

  • Kim, Min-Jung;Kim, Chun-Sung;Park, Jae-Yoon;Lim, Yun-Kyong;Park, Soon-Nang;Ahn, Sug-Joon;Jin, Dong-Chun;Kim, Tae-Hyung;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.36 no.1
    • /
    • pp.7-11
    • /
    • 2011
  • Ursolic acid is a triterpenoid compound present in many plants. This study examined the antimicrobial activity of ursolic acid against mutans streptococci (MS) isolated from the Korean population. The antimicrobial activity was evaluated by the minimum inhibitory concentration (MIC) and time kill curves of MS. The cytotoxicity of ursolic acid against KB cells was tested using an MTT assay. The $MIC_{90}$ values of ursolic acid for Streptococcus mutans and Streptococcus sobrinus isolated from the Korean population were $2 {\mu}g$/ml and $4 {\mu}g$/ml, respectively. Ursolic acid had a bactericidal effect on S. mutans ATCC $25175^T$ and S. sobrinus ATCC $33478^T$ at > $2 \;{\times}\; MIC (4 {\mu}g$/ml) and $4 \;{\times}\; MIC (8 {\mu}g$/ml), respectively. Ursolic acid had no cytotoxic effect on KB cells at concentrations at which it exerted antimicrobial effects. The results suggest that ursolic acid can be used in the development of oral hygiene products for the prevention of dental caries.

Antimicrobial Effects of Allyl Isothiocyanates on Several Microorganisms (휘발성 Allyl Isothiocyanate계 화합물의 항균 활성에 관한 연구)

  • Ahn, Eun-Sook;Kim, Ji-Hye;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.206-211
    • /
    • 1999
  • Volatile antimicrobial compounds, isothiocyanates (ITCs), were compared their antimicrobial activity against 9 strains, Listeria monocytogenes, Bacillus subtilis, Pseudomonas fluorescens, Escherichia coli, Erwinia carotovora, Saccharomyces cerevisiae, Candida albicans, Aspergillus oryzae and Penicillium roqueforti. And synergistic antimicrobial effect of ITCs was examined with acetic acid. Allyl isothiocyanate (AIT), benzyl isothiocyanate (BIT), and ethyl isothiocyanate (EIT) were more effective than other ITCs. MIC (minimum inhibitory concentration) of these compounds was $100{\sim}200\;{\mu}g/dish$ against microorganisms tested and their inhibitory actions were more effective in order of fungi>yeast>Gram-negative bacteria>Gram-positive bacteria. MIC of acetic acid was $50{\sim}500\;{\mu}g/dish$ as lower concentration than ITCs. Using a mixture of volatile antimicrobial compounds and acetic acid, the synergistic effect was increased in $2{\sim}10$ times than ITCs used solely.

  • PDF

Variation of Antifungal Activities of Chitosans on Plant Pathogens

  • Park, Ro-Dong;Jo, Kyu-Jong;Jo, You-young;Jin, Yu-Lan;Kim, Kil-Yong;Shim, Jae-Han;Kim, yong-Wong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.84-88
    • /
    • 2002
  • The effect of chitosan on the growth of plant pathogenic fungi was investigated. Chitosan solubilized in acetic acid showed much higher and more consistent antifungal activity than that solubilized in HCl. The antifungal activity was not significantly affected within a DA (degree of deacetylation) range of $57.3-99.2\%$ tested. Water-soluble and low molecular weight chitosan ($57.3\%$ DA) against 6 plant pathogens showed that Monosporascus canonballus and Pythium irregulare were the most susceptible to the chitosan, while Fusarium oxysporum and F. graminearum were the most resistant. At a concentration of 2.5 mg/ml, the growth of pathogens was completely inhibited except for F. oxysporum. The $MIC_50$ values varied depending on both the DA of the chitosan and the plant pathogens. A chitosan with $57.3\%$ DA exhibited the lowest $MIC_50$ (ranging <0.1-1.8 mg/ml) and that with $84.7\%$ DA the highest $MIC_50$ (ranging <0.4-4.0 mg/ml) depending on the pathogen.

Study of Effectiveness of Antimicrobial on Restraining Formation of Biofilms on the Surface of Aluminum (항균제를 이용한 알루미늄 표면에 생물막 형성 억제효과 분석)

  • Park, SangJun;Oh, YoungHwan;Jo, BoYeon;Choi, MiYeon;Hyun, MinWoo;Jeong, JaeHyun;Kim, EuiYong
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.69-76
    • /
    • 2015
  • The antibacterial activity of a antimicrobial (organic synthetic or organic natural material) on the bacteria (Bacillus megaterium, Arthrobacter oxydans, Micrococcus luteus, Methylobacterium aquaticum) detected in the automobiles showed 99.9% bacteria decrease rate within 30 min of being in contact with the tested bacteria culture. The MIC of the organic synthetic material based antimicrobials and the organic natural material based antimicrobial on the bacteria were 31~500 mg/mL and 8~250 mg/mL, respectively. The bacteria and biofilms were formed on the surface of aluminum after 5 ~8 days in the case of addition of the organic synthetic material based antimicrobial to the MIC values for the tested bacteria culture. On the other hand, there was no proliferation of bacteria and formation of biofilms on the surface of aluminum even after 30 days in the case of addition of the organic natural material based antimicrobial to the MIC values for the tested bacteria culture. As a result, the organic natural material based antimicrobial was confirmed to be more excellent effect of inhibition of bacterial proliferation and restraint of biofilms formation than the organic synthetic material based antimicrobial.

Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes by Hydrogen Peroxide and Lactic acid (과산화수소와 유산ol Escherichia coli O157:H7, Salmonella Enteritidis 및 Listeria monocytogenes의 증식 억제에 미치는 영향)

  • Jang Jae-Seon;Lee Mi-Yeon;Lee Jea-Mann;Kim Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.69-75
    • /
    • 2004
  • The inhibitory effect of the food processing agent on growth of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes was performed with hydrogen peroxide and lactic acid, and combination of hydrogen peroxide and lactic acid. The minimun inhibitory concentration (MIC) of hydrogen peroxide in E coli O157:H7 was 100 ppm at pH 5.0, 6.0, 6.5 and 7.0, while in Listeria monocytogenes 25 ppm at PH 5.5, 6.0 and 50 ppm at PH 6.5, 75ppm at pH 7.0. MIC of lactic acid in E coli O157:H7 was 2500 ppm at pH 5.0, 6.0, 6.5 and 7.0. MIC of lactic acid in S. Enteritidis was 1250 ppm at pH 5.0, 2500 ppm at pH 5.5, 6.0, 5.5 and 7.0, while in L monocytogenes 625 ppm at pH 5.5 and 125 ppm at pH 6.0, 6.5 and 7.0. MIC of combined hydrogen Peroxide and lactic acid in E. coli O157:H7, S. Enteritidis, and L. monocytogenes was 75 ppm of hydrogen peroxide with 2500 ppm of lactic acid at pH 6.5. The correlations between MICs of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogene were obtained through the coefficient of $determination(R^2)$. $R^2$ value were 0.9994, 0.9935 and 0.9283, respectively. The inhibitory effect of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes could be confirmed from the result of this experiment. Therefore, it was expected that the food process would increase or maintain by using lactic acid together with hydrogen peroxide.

Investigation of Antimicrobial Activity of Brown Algae Extracts and the Thermal and pH Effects on Their Activity

  • Lee, So-Young;Kim, Jin-Hee;Song, Eu-Jin;Kim, Koth-Bong-Woo-Ri;Hong, Yong-Ki;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.506-512
    • /
    • 2009
  • The antimicrobial activity of water and ethanol extracts from 30 species of algae was measured using the agar diffusion method and minimum inhibitory concentration (MIC) test. In agar diffusion method, the 95% ethanol extracts from 12 of the algae showed growth inhibition against the tested microorganisms. In particular, Ishige okamurai, Ecklonia stolonifera, Sargassum siliquastrum, Sargassum thunbergii, Colpomenia bullosa, and Ecklonia cava had strong antibacterial activities against Gram-positive bacteria at 4 mg/mL. In the results of the MIC test, S. siliquastrum showed the most antimicrobial activity, where its MIC values ranged from 0.005 to 0.0075% against Listeria monocytogenes, Clostridium perfringens, and Basillus subtilis. In the thermal stability test, for the ethanol extracts of I. okamurai, E. cava, S. siliquastrum, S. thunbergii, and C. bullosa, the extracts proved to maintain high antimicrobial activities when they were treated at $121^{\circ}C$ for 15 min. In the pH stability test, the antimicrobial activity of the S. siliquastrum ethanol extract was stable from pH 2 to 10, whereas the activity of the other species ethanol extracts were weakened under pH 10 against several microbes.

In vitro Activities of LB20304, a New Fluoroquinolone

  • Kim, Mu-Yong;Oh, Jeong-In;Paek, Kyoung-Sook;Hong, Chang-Yong;Kim, In-Chull;Kwak, Jin-Hwan
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.52-59
    • /
    • 1996
  • The in vitro activity of LB20304 was evaluated against clinical isolates and compared with those of Q-35, ciprofloxacin, sparfloxacin, lomefloxacin and ofloxacin. LB20304 demonstrated 16-to 64-fold more potent activity than ciprofloxacin against gram-positive bacteria. LB20304 inhibited 90% of the isolates of methicillin-susceptible Staphylococcus aureus(MSSA) at a concentration of $0.016\mug/ml\; (MIC_{90}). MIC_{90}$ values of LB20304 against methicillin-resistant Staphylococcus aureus (MRSA), methicillin-susceptible Staphylococcus epidermidis (MSSE), methicillin-resistant S. epidermidis (MRSE) and Streptococcus pneumoniae were $2\mug/ml,\; 0.016\mug/ml,\; 0.5\mug/ml \;and\; 0.031\mug/ml,$ respectively. LB20304 was also very active against gram-negative bacteria. Against Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, Pseudomonas aeruginosa and Acinetobacter calcoaceticus, $MIC_{90}s of\; LB20304 were\; 0.031\mug/ml,\; 0.25\mug/ml,\; 2\mug/ml,\; 8\mug/ml\; and\; 0.5\mug/ml$, respectively. Its activity was comparable to that of ciprofloxacin but much better than those of Q-35, sparfloxacin, ofloxacin and lomefloxacin. LB20304 also exhibited the most potent acitvity among quinolones tested against laboratory standard strains, ofloxacin-resistant strains, .betha.-lactamase-producing strains and anaerobic strains. The inhibitory effect$ (IC_{50)$ of LB20304 on DNA gyrase from Micrococcus luteus, determined by the supercoiling assay, was 8-fold more potent than that of ciprofloxacin. LB20304 did not induce topoisomerase-associated DNA cleavage even at a concentration of 10 mg/ml, although ciprofloxacin induced DNA cleavage at a concentration of 1 mg/ml.

  • PDF