• 제목/요약/키워드: MI

검색결과 50,159건 처리시간 0.064초

Modulation of autophagy by miRNAs

  • Kim, Yunha;Lee, Junghee;Ryu, Hoon
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.371-372
    • /
    • 2015
  • MicroRNAs (miRNAs) can regulate the expression of genes that are involved in multiple cellular pathways. However, their targets and mechanism of action associated with the autophagy pathway are not fully investigated yet. EWSR1 (EWS RNA-Binding Protein 1/Ewing Sarcoma Break Point Region 1) gene encodes a RNA/DNA binding protein that is ubiquitously expressed and plays roles in numerous cellular processes. Recently, our group has shown that EWSR1 deficiency leads to developmental failure and accelerated senescence via processing of miRNAs, but its role in the regulation of autophagy remains elusive. In this context, we further investigated and found that EWSR1 deficiency triggers the activation of the DROSHA-mediated microprocessor complex and increases the levels of miR125a and miR351, which directly target Uvrag. Interestingly, the miR125a- and miR351-targeted reduction of Uvrag led to the inhibition of autophagy in both ewsr1 knockout (KO) MEFs and ewsr1 KO mice. In summary, our study demonstrates that EWSR1 is associated with the posttranscriptional regulation of Uvrag via miRNA processing. The regulation of autophagy pathway in miRNAs-Uvrag-dependent manner provides a novel mechanism of EWSR1 deficiency-related cellular dysfunction. [BMB Reports 2015; 48(7): 371-372]

A Highly Effective and Long-Lasting Inhibition of miRNAs with PNA-Based Antisense Oligonucleotides

  • Oh, Su Young;Ju, YeongSoon;Park, Heekyung
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.341-345
    • /
    • 2009
  • MiRNAs are non-coding RNAs that play a role in the regulation of major processes. The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for the characterization and subsequent therapeutic targeting of miRNA function. Recent advances in ASO chemistry have been used to increase both the resistance to nucleases and the target affinity and specificity of these ASOs. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity to DNA or RNA than natural nucleic acids and are resistant to nucleases, which is an essential characteristic for a miRNA inhibitor that will be exposed to serum and cellular nucleases. For increasing cell penetration, PNAs were conjugated with cell penetrating peptides (CPPs) at N-terminal. Among the tested CPPs, Tat-modified peptide-conjugated PNAs have most effective function for miRNA inhibition. PNA-based ASO was more effective miRNA inhibitor than other DNA-based ASOs and did not show cytotoxicity at concentration up to 1,000 nM. The effects of PNA-based ASOs were shown to persist for 9 days. Also, PNA-based ASOs showed considerable stability at storage temperature. These results suggest that PNA-based ASOs are more effective ASOs of miRNA than DNA-based ASOs and PNA-based ASO technology, compared with other technologies used to inhibit miRNA activity can be an effective tool for investigating miRNA functions.

MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction

  • Nguyen, Mai Thi;Lee, Wan
    • BMB Reports
    • /
    • 제55권2호
    • /
    • pp.104-109
    • /
    • 2022
  • Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3'UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.

Effects of miR-155 Antisense Oligonucleotide on Breast Carcinoma Cell Line MDA-MB-157 and Implanted Tumors

  • Zheng, Shu-Rong;Guo, Gui-Long;Zhai, Qi;Zou, Zhang-Yong;Zhang, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2361-2366
    • /
    • 2013
  • Diverse studies have shown that miR-155 is overexpressed in different tumor types. However, the precise molecular mechanism of the ectopic expression of miR-155 in breast cancer is still poorly understood. To further explore the role of miR-155 in breast tumorigenesis, we here assessed the influence of miR-155 antisense oligonucleotide (miR-155 ASO) on MDA-MB-157 cell viability and apoptosis in vitro. Furthermore, the effects of inhibitory effects of miR-155 on the growth of xenograft tumors in vivo were determined with performance of immunohistochemistry to detect expression of caspase-3, a pivotal apoptosis regulatory factor, in xenografts. Transfection efficiency detected by laser confocal microscope was higher than 80%. The level of miR-155 expression was significantly decreased (P<0.05) in the cells transfected with miR-155 ASO, compared with that in cells transfected with a negative control. After being transfected with miR-155 ASO, the viability of MDA-MB-157 cells was reduced greatly (P<0.05) and the number of apoptotic cells was increased significantly. Additionally, miR-155 ASO inhibited the growth of transplanted tumor in vivo and significantly increased the expression of caspase-3. Taken together, our study revealed that miR-155 ASO can induce cell apoptosis and inhibit cell proliferation in vitro. Moreover, miR-155 ASO could significantly repress tumor growth in vivo, presumably by inducing apoptosis via caspase-3 up-regulation. These findings provide experimental evidence for using miR-155 as a therapeutic target of breast carcinoma.

microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study

  • Tanoglu, Alpaslan;Balta, Ahmet Ziya;Berber, Ufuk;Ozdemir, Yavuz;Emirzeoglu, Levent;Sayilir, Abdurrahim;Sucullu, Ilker
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1851-1855
    • /
    • 2015
  • Background: There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. Materials and Methods: The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). Conclusions: Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.

동북아시아 지역에서 MODIS와 MI에 의한 에어로졸 광학두께 비교 (Comparison of Aerosol Optical Thicknesses by MODIS and MI in Northeast Asia)

  • 김은규;이규태;정명재
    • 대한원격탐사학회지
    • /
    • 제33권5_1호
    • /
    • pp.607-615
    • /
    • 2017
  • 본 연구에서는 동북아시아($15{\sim}55^{\circ}E$, $90{\sim}150^{\circ}N$) 영역에 대하여 극궤도 위성 Terra와 Aqua에 탑재된 Moderate Resolution Imaging Spectrometer (MODIS) 센서와 우리나라 정지궤도 위성인 통신해양기상위성(Communication, Ocean and Meteorological Satellite, COMS)에 탑재된 Meteorological Imager (MI) 센서에 의한 에어로졸 광학두께(AOT) 산출 결과와 지상의 Aerosol Robotic Network (AERONET) 관측 자료를 비교 분석하였다. 그 결과 MODIS와 MI에 의한 에어로졸 광학두께는 해양에서 비교적 잘 일치하였으나 구름 가장자리와 육지에서는 두 센서의 에어로졸 광학두께 차이가 크게 나타났다. 그 이유로서 MODIS는 가시 채널과 적외 채널을 혼용하는 반면 MI는 오직 가시채널 만 사용하기 때문에 구름 가장자리의 옅은 구름을 에어로졸로 인식할 수 있고 육지에서는 지표면 특성에 따라 MODIS와 MI에 의한 에어로졸 광학두께 산출 차이가 발생된다. 따라서 MI 에어로졸 광학두께는 구름 가장자리와 지표면 특성의 영향을 주는 지표면 반사도의 정확성 개선을 통해 에어로졸 광학두께 산출 결과를 개선할 수 있다고 사료된다.

비소세포 폐암에서의 Microsatellite Instability와 p53. K-ras, c-myc 암단백의 발현 (Microsatellite Instability and p53, k-ras c-myc Oncoprotein Expression in Non-Small Cell Lung Carcinoma)

  • 나석주;곽문섭
    • Journal of Chest Surgery
    • /
    • 제33권1호
    • /
    • pp.60-67
    • /
    • 2000
  • Background: Microsatellites are short-tandem repeated uncleotide sequences present throughout the human genome. Alterations of microsatellites have been termed microsatellite instability(MI). It has been generally known that microsatellite instability detected in hereditary non-polyposis colorectal cancer (HNPCC) reflects genetic instability that is caused by impairments of DNA mismatch repair system regarding as a novel tumorigenic mechanism. A number of studies reported that MI occurred at varying frequencies in non-small cell lung carcinoma (NSCLC). However It has been unproven whether MI could be a useful market of genetic instability and have a clinical significance in NSCLC. Material and Method : We have examined whether MI can be observed in thirty NCSLC using polymerase chain reaction whether such alterations are associated with other molecular changes such as p53, K-ras and c-myc oncoproteins expression detected by immunohistochemical stain,. Result: MI(+) was observed in 16.6%(5/30) and MI(-) was 83.3% (25/30) Average age was 50$\pm$7.5 year-old in MI(+) group and 57$\pm$6.6 year-old in MI(-) group. Two year survival rate in MI(=) group (20% 1/5) was worse than MI(-) group (64% 16/25) with a statistic difference. (P=0.04) The positive rate of K-ras oncoprotein expression and simultaneous expression of 2 or 3 oncoproteins expression were higher in MI(+) group than MI(-) group with a statistic difference(P=0.05, P=0.01) Conclusion: From, these results the authors can conclude that MI is found in some NSCLC and it may be a novel tumorigenic mechanism in some NSCLC. We also conclude that MI could be used as another poor prognostic factor in NSCLS.

  • PDF

Differential microRNA Expression by Solexa Sequencing in the Sera of Ovarian Cancer Patients

  • Ji, Ting;Zheng, Zhi-Guo;Wang, Feng-Mei;Xu, Li-Jian;Li, Lu-Feng;Cheng, Qi-Hui;Guo, Jiang-Feng;Ding, Xian-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1739-1743
    • /
    • 2014
  • MicroRNAs are a class of small noncoding RNA which play important regulatory roles in a variety of cancers. MiRNA-specific expression profiles have been reported for several pathological conditions. In this study, we combined large scale parallel Solexa sequencing to identify 11 up-regulated miRNAs and 19 down-regulated miRNAs with computational techniques in the sera of ovarian cancer patients while using healthy serum as the control. Among the above, four miRNAs (miR-22, miR-93, miR-106b, miR-451) were validated by quantitative RT-PCR and found to be significantly aberrantly expressed in the serum of ovarian cancer patients (P<0.05). There were no significant differences between samples from cancer stage I/II and III/IV. However, the levels of miR-106b (p=0.003) and miR-451 (p=0.007) were significantly different in those patients under and over 51 yearsof age. MiR-451 and miR-93 were also specific when analyzed with reference to different levels of CA125. This study shows that Solexa sequencing provides a promising method for cancer-related miRNA profiling, and selectively expressed miRNAs could be used as potential serum-based biomarkers for ovarian cancer diagnosis.

A pilot study on differential expression of microRNAs in the ventromedial prefrontal cortex and serum of sows in activity restricted crates or activity free pens

  • Yin, Guoan;Guan, Liwei;Yu, Langchao;Huang, Dapeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1469-1474
    • /
    • 2019
  • Objective: Physical activity restriction in sows may lead to behavioral abnormalities and affective disorders. However, the psychophysiological state of these sows is still unclear. As miRNAs can be used as effective markers of psychopathy, the present study aimed to assess the difference in microRNA expression between the long-term activity restricted sows and activity free sows, thus contributing to the understanding of abnormal sow behavior. Methods: Four dry sows (sixth parity, Large${\times}$White genetic line) were selected from activity restricted crates (RC) or activity free pens (FP) separately. microRNAs in the ventromedial prefrontal cortex (vMPFC) and serum were examined using real-time polymerase chain reaction, and the correlation between the miRNAs expressed in the vMPFC and serum was evaluated. Results: miR-134 (1.11 vs 0.84) and miR-1202 (1.09 vs 0.85) levels were higher in the vMPFC of the RC sows than in the FP sows (p<0.01). Furthermore, miR-132 (1.27 vs 1.08) and miR-335 (1.03 vs 0.84) levels were also higher in the RC sows than in FP sows (p<0.05); however, miR-135a, miR-135b, miR-16, and miR-124 levels were not different (p>0.05). The relative expression of serum miR-1202 was higher in the RC sows than in the FP sows (1.04 vs 0.54) (p<0.05), and there was a strong correlation (R = 0.757, p<0.05) between vMPFC and Serum levels of miR-1202. However, no significant difference was observed in miR-16 levels in the serum of the RC sows and FP sows (p>0.05). Conclusion: This pilot study demonstrates that long-term activity restriction in sows likely results in autism or other complex psychopathies with depression-like behaviors. These observations may provide new insights for future studies on abnormal behavior in sows and contribute to research on human psychopathy.

MiR-182-5p Mediated by Exosomes Derived From Bone Marrow Mesenchymal Stem Cell Attenuates Inflammatory Responses by Targeting TLR4 in a Mouse Model of Myocardial Infraction

  • Chuang Sun;Wei Li;Yanhong Li;Jian Chen;Huixian An;Guangwei Zeng;Tingting Wang;Yazhou Guo;Changying Wang
    • IMMUNE NETWORK
    • /
    • 제22권6호
    • /
    • pp.49.1-49.15
    • /
    • 2022
  • Exosomes derived from mesenchymal stem cells (MSCs) could protect against myocardial infarction (MI). TLR4 is reported to play an important role in MI, while microRNA-182-5p (miR-182-5p) negatively regulates TLR4 expression. Therefore, we hypothesize that MSCs-derived exosomes overexpressing miR-182-5p may have beneficial effects on MI. We generated bone marrow mesenchymal stem cells (BM-MSCs) and overexpressed miR-182-5p in these cells for exosome isolation. H2O2-stimulated neonatal mouse ventricle myocytes (NMVMs) and MI mouse model were employed, which were subjected to exosome treatment. The expression of inflammatory factors, heart function, and TLR4 signaling pathway activation were monitored. It was found that miR-182-5p decreased TLR4 expression in BM-MSCs and NMVMs. Administration of exosomes overexpressing miR-182-5p to H2O2-stimulated NMVMs enhanced cell viability and suppressed the expression of inflammatory cytokines. In addition, they promoted heart function, suppressed inflammatory responses, and de-activated TLR4/NF-κB signaling pathway in MI mice. In conclusion, miR-182-5p transferred by the exosomes derived from BM-MSCs protected against MI-induced impairments by targeting TLR4.