• Title/Summary/Keyword: MHD Power Generation

Search Result 6, Processing Time 0.017 seconds

Studies on a Effective Scheme to Obtain High Temperature Working Plasma for MHD Power Generation (MHD발전용 작동 플라즈마를 고온가열하기 위한 효율적 방안에 관한 연구)

  • 김윤식;노창주;김영길;공영경;최춘성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Heat transfer processes in the combustion chamber of a pebble bed regenerative heat exchanger for MHD power generation has been analyzed numerically for heating, evacuation argon heating periods individually. The calculated result well explain the measured temperature change at the top of the pebble bed. The analytical result point out that the length of evacution period and the geometry optimization both for the combustion chamber and the heat storage bed are very important factors for the improvement of thermal performance in MHD power generation.

A Study on the Disk Type MHD Generator Using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기에 관한 연구)

  • 배철오;신명철;김윤식;길경석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.447-453
    • /
    • 1999
  • In MHD power generation system, enthalpy of the working gas is convened to electric power directly through expansion in generator channel. It means that electric power can be generated without a moving mechanical linkage such as turbine blades. The principle of MHD generation is based on Faraday'law of induction that eletromotive force(u$\times$B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In this paper, helium gas seeded with cesium is used as working gas. There are two types of generator in MHD generation; linear type faraday and disk type hall generator. Rogowski coils having the bandwidth of the 100(Hz) ~ 20(kHz) were used for measuring current flowing MHD disk channel. Optimum load resistor value of the MHD generator studied was 2.5[$\Omega$]. Disk type hall generator's generation performance is the main target of this paper, which superiors to linear type Faraday generator in many points. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Experiment on Small A.C. MHD Power Generator (소용량 교류 MHD발전기에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.25 no.5
    • /
    • pp.79-87
    • /
    • 1976
  • This paper is to investigate the A.C generation of MHD engine, converting directly the kinetic energy of conductive gas in high temperature to electric power by the effect of magnetic field. It is known that there are at least two kinds of method in A.C MHD power generation; one, by sending stationary plasma flow in an alternating or rotating magnetic field and the other, by transmission of pulse type plasma flow in uniform and constant magnetic field, former method is adopted here. In order to raise the total efficiency of close cycle in combination with nuclear power and MHD genertaion, an argon plasma jet is utilized as heat source, which is not mixed with the seed material, and the design data are obtained for A.C MHD generation in small capacity, but induced voltage and power output have the maximum values, 15 voltages and 7.5W respectively due to plasma flow with low conductivity and weak magnetic field.

  • PDF

Present Research Status of MHD Electrical Power Generation

  • Shioda, Susumu
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.3-8
    • /
    • 1989
  • Recent research activities for open and closed cycle MHD electrical power generations are reviewed. World first full scale 500MWe natural gas fired open cycle MHD is now under construction in USSR. Coal-fired open cycle MHD researches are in the stage of proof of concept and retrofitting of old coal power stations with MHD is planned in US and other countries. Basic research for closed MHD is most actively pursued in Japan, which potentially can provide a very high efficiency and a simple and reliable system.

  • PDF

A Study on Enthalpy Extraction Rate and Isentropic Efficiency of the Disk Type Generator using a Shock Tube (충격파관을 이용한 DISK형 MHD발전기의 엔탈피추출율과 단열효율에 관한 연구)

  • Bae, C.O.;Kim, Y.S.;Park, Y.S.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1981-1983
    • /
    • 1998
  • The principle of the MHD generation is based on Faraday's law of induction that a eletromotive force(u ${\times}$ B) is generated when the working gas of velocity u flows a channel in which magnetic field of strength(B) exists. In MHD power generation system, enthalpy of the working gas is converted to electric power directly through expansion in generator channel. It means that electric power can be generated without moving mechanical linkage such as turbine blades. There are two types in the MHD generator; linear type Faraday and disk type hall generator. Disk type hall generator is the main target of this paper. Isentropic efficiency and enthalpy extraction rate of disk type shock tube driven hall generator is discussed here.

  • PDF

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF