• Title/Summary/Keyword: MHC class II

Search Result 121, Processing Time 0.03 seconds

Immunoadjuvanticity of Novel CpG ODN (Oligodeoxynucleotide)

  • Park, Su-Jung;Cho, Hyeon-Cheol;Bae, Keum-Seok;Kim, Soo-Ki
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.46-52
    • /
    • 2007
  • In the course of novel TLR (Toll like receptor) 9 ligand, we found novel CpG ODN (Oligodeoxynucleotide) was active in augmenting antibody in mice. However, immune mechanism of new CpG ODNs is unclear. To clarify this, we examined immunoadjuvanticity by employing in vitro and in vivo immune profiles. In brief, in vitro treatment of novel CpG ODN upregulated the expression of TNF-$\alpha$, IL-6, and IL-12 mRNA in macrophages as well as that of IFN-$gamma$ mPNA in mouse splenocytes. In parallel, in vivo injection of novel CpG ODN directly activates macrophages and splenocytess, consequently upregulating MHC class II and CD86. Finally, we demonstrated anti-HBs antibody augmentation of novel CpG ODN. Collectively, this data indicates that novel CpG ODN is immunoadjuvant armed with Th1 typed immune machinery.

Screening of Potential Stress-Responsive and Immune-Related Genes by Expressed Sequence Tags in Mud Loach (Misgurnus mizolepis)

  • Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2002
  • EST analysis was performed to identify stress-responsive and immune-related genes from mud loach (Misgurnus mizolepis), cDNA libraries were constructed with liver, intestine and kidney tissues and randomly chosen clones (216 for liver, 198 for intestine and 224 for kidney) were subjected to automated sequence analysis. Of 638 clones sequenced in totlal, approximalely 25% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothrtical/unknown genes. Several potential stress-responsive biomarker and/or immure-related genes were identified in all the tissues examined. It included lectin, MHC class I/II proteins, proteinase inhibitors, superoxide dismulase, catalase, glutathionc-S. transferase, heat-shock protein, warm temperature acclimation protein, complements, methylrransferasc, zinc finger proteins, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for the molecular genetics and breeding of this species with an emphasis on the development of stress. (and disease)-resistsnt fish.

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Daniel M. Miller
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-203
    • /
    • 2002
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-α/β) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2′, 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-α and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

Human Cytomegalovirus Inhibition of Interferon Signal Transduction

  • Miller, Daniel M.;Cebulla, Colleen M.;Sedmak, Daniel D.
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.203-208
    • /
    • 2000
  • Cytomegalovirus (CMV), a beta-herpesvirus with worldwide distribution, exhibits host persistence, a distinguishing characteristic of all herpesviruses. This persistence is dependent upon restricted gene expression in infected cells as well as the ability of productively infected cells to escape from normal cell-mediated anti-viral immunosurveillance. Type I (IFN-$\alpha$/$\beta$) and type II (IFN-γ) interferons are major components of the innate defense system against viral infection. They are potent inducers of MHC class I and II antigens and of antigen processing proteins. Additionally, IFNS mediate direct antiviral effects through induction effector molecules that block viral infection and replications such as 2', 5-oligoadenylate synthetase (2, 5-OAS). IFNS function through activation of well-defined signal transduction pathways that involve phosphorylation of constituent proteins and ultimate formation of active transcription factors. Recent studies have shown that a number of diverse viruses, including CMV, EBV, HPV mumps and Ebola, are capable of inhibiting IFN-mediated signal transduction through a variety of mechanisms. As an example, CMV infection inhibits the ability of infected cells Is transcribe HLA class I and II antigens as well as the antiviral effector molecules 2, 5-OAS and MxA I. EMSA studies have shown that IFN-$\alpha$ and IFN-γ are unable to induce complete signal transduction in the presence of CMV infection, phenomena that are associated with specific decreases in JAKl and p48. Viral inhibition of IFN signal transduction represents a new mechanistic paradigm for increased viral survival, a paradigm predicting widespread consequences in the case of signal transduction factors common to multiple cytokine pathways.

  • PDF

T 임파구와 세포성면역

  • 최철순
    • Journal of the korean veterinary medical association
    • /
    • v.25 no.10
    • /
    • pp.595-606
    • /
    • 1989
  • 항원제시세포(APC)와 보조T세포 간의 협력작용에 의하여 활성화된 작동세포(NK세포, CTL, K세포, 대식세포, 과립구 등)의 종양세포, 이식장기 및 세포내기생세균에 감염된 각종 세포에 대한 세포독성작용은 생체방어를 위한 중요한 세포성면역기전이다. 지난 몇 년간 세포성면역기전에 관한 많은 연구에도 불구하고 T림파구매개성 세포독성작용의 면역생물학적기전은 확실히 밝혀있지 않다. 지금까지 알려진 중요한 연구내용을 요약하면 다음과 같다. 1. 세포독성작용을 나타내는 작동세포로는 NK세포, CTL, K세포, 대식세포/단핵구 및 과립구가 있다. 2. T세포의 세포표면항원분자군(CD)으로는 $CD_{2},\;CD_{3},\;CD_{4}[Ly_{3}T_{4}],\;CD_{5}[=Ly_{1}],\;CD_{7},\;CD_{8}[Ly_{2,3}]$가 있으며 $CD_{4}$는 보조Ttpvhdml 특이마커이고 $CD_{8}$는 세포독성 T세포 및 억압T세포의 특이마커이다. 주요 T세포수용체(TCR)는 $CD_{4}$ 또는 $CD_{8}$ 분자와 가까이 연합된 이향체($TCR-{\alpha}{\beta}/TCR-{\gamma}{\delta}$이며 보조 T세포 $CD_{4}$(마우스 $L_{3}T_{4}$)는 수용체와 연합되어 있는반면 억압 T세포 $CD_{8}(Ly+_{2,3})$는 항원수용체와 연합되어 있다. 3. T세포는 Ti-$CD_{3}$(항원/MHC) 복합체를 통한 '항원가교'에 의한 자극(항원인식)과 $CD_{2}$를 통한 비특이경로에 의하여 활성화(분화증식)된다. 비특이경로를 통한 활성경로에서 T세포($CD_{4}$$CD_{8}$)가 활성화되기 위하여는 보조T세포가 생산하는 IL-2을 요구하며 IL-2의 자극으로 분화증식된 $CD_{8}$는 세포독성능을 나타내지만 $CD_{4}^{+}$는 여전히 세포독성능을 나타내지 못한다. 4. 보조T세포는 class II MHC분자와 연합된 항원을 식별하는 반면 세포독성T세포는 class I MHC 분자와 연합된 항원을 식별한다. 5. 림파구 매개성 세포독성은 접촉(conjugati-on), 탈분극(depolarization), 용해계획(progra-mming), 용해(lysis) 및 재순환(recycling)의 단계를 거쳐 진행된다. 6. 표적세포살해매체로는 perforin / PFP / cy-tolysin, lymphopores, lymphotoxins, protone, cytolytic enzymes가 알려졌으며 세포독성작용은 이들 이외에도 여러 가지 매체를 통한 복합작용으로 추정된다. 7. CTL 매개성 표적세포의 주요 대사변화는 actomyocin ATPase의 증가, phosphocreatine과 ATPase의 소모, ATP 의존성 $Na^{+}/K^{+}$ 펌프작용의 중지, ATP 의존성 $Ca^{2+}$ 유출감소 및 세포내 축적이 관찰된다. 8. $Ca^{2+}$의 축적으로 세포막 교질 침투손상을 주어 수분의 유입을 증가시킴으로써 수포형성, 핵붕괴, 사립체팽화 및 정상세포 구조상실(Zeiosis)이 있다. 결론적으로 CTL 매개성 세포독성작용은 PFP, LT, TNF, 유사 TNF / LT 및 기타 매체를 통한 복합작용이며 세포살해기전은 지속적 대사소모와 정형적 세포구조(핵 및 세포질)의 파괴에 의한 것이다.

  • PDF

Inhibitory Effect of Deer Antler Aqua-acupunture (DAA) on Cathepsin S Activity and Rheumatoid Arthritis in Rats (생쥐에서 녹용약침액이 자가항원제시형 Cathepsin S 활성의 저해와 류마티스 관절염 억제에 미치는 효과)

  • Abn, Hyung-jun;Kim, Kap-sung
    • Journal of Acupuncture Research
    • /
    • v.20 no.3
    • /
    • pp.104-116
    • /
    • 2003
  • 목적 : 시스테인 단백분해 효소인 cathepsin는 인간과 생쥐의 항원제시세포에서 II형 주적합항원 불변사슬(MHC class II invariant chain)의 분해에 관여한다. 본 연구는 녹용 약침액이 류마티스 관절염 생쥐 모델의 골조직(연골과 활액) 유래 cathepsin 활성에 미치는 영향을 검정하였다. 방법 : 관절염 동물모델은 BALb/c계 생쥐를 생후 3일에 흉선 적출(3d-Tx)을 하여 만들었다. 동물모델의 골조직, 임파절세포, 비장 등을 녹용처치군과 대조군으로 나누어 cathepsin의 활성도 및 자가항원 특이(C-II-specific) T-세포의 활성도를 비교 분석하였다. 결과 : 각 장기에서 cathepsin S의 활성은 녹용약침 처치군에서 농도 의존적으로 유의성 있게 억제되었고, T-세포 특이 자가항원반응은 녹용약침 처치군의 임파절 세포에서 유의성있게 억제되었다. 그리고 T-세포 특이 자가항원 반응의 불활성화에는 녹용 10~20ug/ml의 용량으로 충분하였다. 결론 : 이러한 실험결과는 녹용 약침액이 cathepsin S를 선택적으로 억제시켜 류마티스 관절염과 같은 자가면역 질환에 유효한 치료약물로 사용될 수 있음을 시사한다.

  • PDF

Inhibitory Effect of a Decoction Combined with Ostericum koreanum Maxim. and Aralia continentalis Kitagawa on Collagen II-induced Arthritis Mice (Type II Collagen으로 유도된 관절염에 대한 강활(羌活), 독활(獨活) 배합약물의 억제 효과)

  • Yoon, Ho-Suk;Lee, Young Cheol;Lee, Jang-Cheon
    • Herbal Formula Science
    • /
    • v.21 no.1
    • /
    • pp.161-176
    • /
    • 2013
  • Objectives : To clarify the anti-arthritic activity of Ostericum koreanum Maxim. (OS) plus Aralia continentalis Kitagawa (AC) in vivo. Methods : All mice were immunized with bovine type II collagen. After a second collagen immunization, mice were treated with OS plus AC once a day for 7 weeks. Oral administration of OS plus AC (200 or 50 mg/kg) significantly suppressed the progression of CIA, which extend is comparable to that of methotrexate (MTX, 0.3 mg/kg), a positive control. The severity of arthritis within the knee joints was evaluated by histological assessment of cartilage destruction and pannus formation. Results : Administration of OS plus AC significantly suppressed the progression of CIA and inhibited the production of TNF-${\alpha}$ and IL-6 in serum. The erosion of cartilage was dramatically reduced in mouse knees after treatment with OS plus AC. In conclusion, our results demonstrates that OS plus AC significantly suppressed the progression of CIA and that this action was characterized by the decreased production of IL-6, IFN-${\gamma}$ and collagen II specific antibody in serum, CD3+CD69+ T cells, MHC class II+/CD11c+ (in DLN), CD11b+Gr-1+ cells (in PBMC), CD11b +Gr-1+ cells, B220+/CD23+ (in paw joint). Conclusions : The the levels of IFN-${\gamma}$ in the culture supernatant of splenocytes stimulated with CD3/CD28 or collagen were dramatically decreased, while those of IL-4 was increased. In the serum of OS and AC-treated mice, the levels of IgM RA factor were decreased.

Immunological Synergistic Effects of Combined Treatment with Herbal Preparation (HemoHIM) and Red Ginseng Extracts (마우스세포를 이용한 홍삼추출물과 생약복합추출물의 병용 처리에 따른 면역활성 효과)

  • Byun, Myung-Woo;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.182-190
    • /
    • 2015
  • This present study demonstrates the immunological synergistic effects of herbal preparation (HemoHIM) and red ginseng powder granule in various immune cell models (bone marrow-derived macrophages, dendritic cells, and mouse splenocytes) from mice. Both herbal preparation and red ginseng extracts were treated to bone-marrow derived macrophages, dendritic cells, and mouse splenocytes, and there was no cytotoxicity at a dose below $200{\mu}g/mL$. Cell proliferation and cytokine [tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-12] production tested in bone marrow-derived macrophages and dendritic cells significantly increased upon combined treatment. Cell surface marker (CD 80/86, MHC class I/II)-mediated immune cell activation was highly elevated by combined treatment. For cytokine production in splenocytes, combined treatment significantly increased production of Th 1 type cytokines [IL-2 and interferon (IFN)-${\gamma}$] but not Th 2 type cytokines (IL-4 and IL-10). Therefore, combined treatment with HemoHIM and red ginseng extracts is an effective method to establish powerful immunological synergy in immune cells.

Immunomodulatory effect of bee pollen extract in macrophage cells (꿀벌 꽃가루 열수 추출물의 큰포식세포 면역활성 효과)

  • Kim, Yi-Eun;Cho, Eun-Ji;Byun, Eui-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.437-443
    • /
    • 2018
  • Activation of macrophages plays an important role in the host-immune system. In this study, we investigated the functional roles and related signaling mechanism of hot-water extracts of bee pollen (BPW) in RAW 264.7 macrophages. Since BPW did not exert cytotoxicity at concentrations ranging from 62.5 to $250{\mu}g/mL$ in macrophage cells, a concentration of $250{\mu}g/mL$ was used as the maximum dose of BPW throughout subsequent experiments. BPW increased inducible nitric oxide synthase-mediated nitric oxide production in a concentration-dependent manner. Additionally, BPW was found to induce macrophage activation by augmenting the expression of cell surface molecules (cluster of differentiation; CD80/86, and major histocompatibility complex; MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis $factor-{\alpha}$, interleukin-6, and $IL-1{\beta}$) through mitogen-activated protein kinase and nuclear $factor-{\kappa}B$ signaling pathways in RAW 264.7 macrophages. Taken together, our results indicate that BPW could potentially be used as an immunomodulatory agent.

Immunocytochemical Characteristics of the Short-term Cultured Mesothelial Cells (단기배양한 중피세포의 면역세포화학적 연구)

  • Jeon, Ho-Jong;Lee, Mi-Ja;Lee, Mi-Sook;Jeong, Yu-Kyung;Lee, Young-Mi;Choi, Hyung-Ho
    • The Korean Journal of Cytopathology
    • /
    • v.6 no.2
    • /
    • pp.106-115
    • /
    • 1995
  • Reactive humsn mesothelial cells were examined by immunocytochemical stain with intermediate filaments (cytokeratin [CK1, CK7, CK8, CK18, CD19), vimentin, desmin, actin), epithelial membrane antigen, carcinoembryonic antigen (CEA), MHC class II antigen (HLA-DR), LeuM-1 (CD15), $\alpha1-antitrypsin$(ACT), $\alpha1-antichymotrypsin$ (ACHT), CD68(KP-1) and FcyRIII(CD16). The mesothelial cells were isolated from patients with liver cirrhosis and pleural effusion, and short-term cultured in RPMI 1640 media containing 10% heat inactivated fetal calf serum and 1% identical supernatant fluid of the patients' transudates. The results obtained are as follows 1. The cultured-reactive mesothelial cells were positive for the protein of cytoskeleton such as cytokeratin and vimentin, but negative for desmin and actin. The resting mesothelial cells showed positive reactions for cylokeratin, but negative for vimentin, desmin and actin. 2. The primary antibodies to the cytokeratin were strongly reactive for CK1, CK8 and CK18 but negative for CK7 and CK19 in both reactive and resting mesothelial cells. 3. Resting mesothelial cells showed negative reactions for CEA, but strong positive reactions in cultured-reactive mesothelial cells. 4. The markers for the monocytes/histiocytes(CD11b, CD14, CD16, CD68, Iysozyme and $\alpha1-antitrypsin$ and $\alpha1-antichymotrypsin$) were nonreactive in resting mesothelial cells, but lysozyme and $\alpha1-antitrypsin$ were weakly reactive in reactive and proliferative mesothelial cells. 5. MHC Class II molecule(HLA-DR antigen) was negative in both resting and reactive mesothelial cells. These results suggest that the short-term cultured, reactive mesothelial cells show a newly aberrant expression of the vimentin and calcine-embryonic antigen. The reason of the aberrant expression of the intermediate filament and oncofetal antigen in reactive and proliferative mesothelial cells should be further evaluated.

  • PDF