• Title/Summary/Keyword: MG-63 cells

Search Result 296, Processing Time 0.032 seconds

Synergistic anticancer effects of timosaponin AIII and ginsenosides in MG63 human osteosarcoma cells

  • Jung, Okkeun;Lee, Sang Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.488-495
    • /
    • 2019
  • Background: Timosaponin AIII (TA3) is a steroidal saponin extracted from Anemarrhena asphodeloides. Here, we investigated the anticancer effects of TA3 in MG63 human osteosarcoma cells. TA3 attenuates migration and invasion of MG63 cells via regulations of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are involved with cancer metastasis in various cancer cells. TA3 reduced enzymatic activities and transcriptional expressions of MMP-2 and MMP-9 in MG63 cells. TA3 also inhibited Src, focal adhesion kinase, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38, ${\beta}-catenin$, and cAMP response element binding signaling, which regulate migration and invasion of cells. TA3 induced apoptosis of MG63 cells via regulations of caspase-3, caspase-7, and poly(ADP-ribose) polymerase (PARP). Then, we tested several ginsenosides to be used in combination with TA3 for the synergistic anticancer effects. We found that ginsenosides Rb1 and Rc have synergistic effects on TA3-induced apoptosis in MG63 cells. Methods: We investigated the anticancer effects of TA3 and synergistic effects of various ginseng saponins on TA3-induced apoptosis in MG63 cells. To test antimetastatic effects, we performed wound healing migration assay, Boyden chamber invasion assays, gelatin zymography assay, and Western blot analysis. Annexin V/PI staining apoptosis assay was performed to determine the apoptotic effect of TA3 and ginsenosides. Results: TA3 attenuated migration and invasion of MG63 cells and induced apoptosis of MG63 cells. Ginsenosides Rb1 and Rc showed the synergistic effects on TA3-induced apoptosis in MG63 cells. Conclusions: The results strongly suggest that the combination of TA3 and the two ginsenosides Rb1 and Rc may be a strong candidate for the effective antiosteosarcoma agent.

Yak-kong and Soybean Induced Expression of Osteoprotegerin in MG-63 Human Osteoblastic Cells Requires Estrogen Receptor-$\beta$

  • Kim, Jin-Young;Cho, Yun-Hi
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.159-168
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmemopausal osteoporosis in oriental folk medicine. In our previous study, the treatment of Yak-kong and soybean increased estrogen receptor-a (ERa) expression and proliferation of MG-63 osteoblastic cells. In contrast, the increase of estrogen receptor-$\beta$ (ER$\beta$) expression in proliferating MG-63 cells with Yak-kong and soybean treatment was less pronounced, which suggested that ER$\beta$ may play a role rather in the regulation of bone cell differentiation To determine the role of ER$\beta$ in Yak-kong or soybean mediated regulation of bone cell differentiation, we established MG-63 cell lines stably expressing either ER$\beta$ or antisense ER$\beta$ RNAs. Increased expression of ER$\beta$ did not affect ERa expression and proliferation of MG-63 cells. However, increased expression of ER$\beta$ in MG-63 cells (ER$\beta$-MG63 cells) selectively enhanced Yak-kong or soybean induced expression of osteoprotegerin (OPG), a novel soluble glycoprotein which is secreted from osteoblasts and mediates the signal for osteoclast differentiation. Inhibition of ER$\beta$ expression by antisense ER$\beta$ RNAs (As-ER$\beta$-MG63) caused these cells to insensitize Yak-kong or soybean induced expression of OPG but increased MG-63 cell proliferation. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5{\times}l0^{-8}$ M, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/mL, on OPG expression in ER$\beta$-MG63 cell demonstrate that the enhanced expression of OPG with Yak-kong treatment is mediated by the synergistic effect of low leveled isoflavones in the extracts. Together, coupled with low level of ER expression in osteoclasts, our data demonstrate that ER$\beta$ in osteoblasts plays an important role in Yak-kong and soybean mediated inhibition of osteoclast differentiation indirectly by enhancing the expression of OPG.

Transglutaminase-2 Is Involved in Expression of Osteoprotegerin in MG-63 Osteosarcoma Cells

  • Lee, Hye Ja;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.204-209
    • /
    • 2013
  • Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor receptor superfamily. It usually functions in bone remodeling, by inhibiting osteoclastogenesis through interaction with a receptor activator of the nuclear factor ${\kappa}B$ (RANKL). Transglutaminases-2 (Tgase-2) is a group of multifunctional enzymes that plays a role in cancer cell metastasis and bone formation. However, relationship between OPG and Tgase-2 is not studied. Therefore, we investigated the involvement of 12-O-Tetradecanoylphorbol 13-acetate in the expression of OPG in MG-63 osteosarcoma cells. Interleukin-$1{\beta}$ time-dependently induced OPG and Tgase-2 expression in cell lysates and media of the MG-63 cells by a Western blot. Additional 110 kda band was found in the media of MG-63 cells. 12-O-Tetradecanoylphorbol 13-acetate also induced OPG and Tgase-2 expression. However, an 110 kda band was not found in TPA-treated media of MG-63 cells. Cystamine, a Tgase-2 inhibitor, dose-dependently suppressed the expression of OPG in MG-63 cells. Gene silencing of Tgase-2 also significantly suppressed the expression of OPG in MG-63 cells. Next, we examined whether a band of 110 kda of OPG contains an isopeptide bond, an indication of Tgase-2 action, by monoclonal antibody specific for the isopeptide bond. However, we could not find the isopeptide bond at 110 kda but 77 kda, which is believed to be the band position of Tgase-2. This suggested that 110 kda is not the direct product of Tgase-2's action. All together, OPG and Tgase-2 is induced by IL-$1{\beta}$ or TPA in MG-63 cells and Tgase-2 is involved in OPG expression in MG-63 cells.

Apoptotic activity of demethoxycurcumin in MG-63 human osteosarcoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • Demethoxycurcumin (DMC), which is a curcuminoid found in turmeric, has anti-proliferative effects on cancer cells. However, the effect of DMC on osteosarcoma has not been established. The aim of this study was to examine the effects of DMC on cell growth and apoptosis induction in MG-63 human osteosarcoma cells. This study was investigated using 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromid assay, Live/Dead cell assay, 4', 6-diamidino-2-phenylindole staining, and immunoblotting in MG-63 cells. DMC induced MG-63 cell death in a dose-dependent manner, with an estimated IC50 value of 54.4 µM. DMC treatment resulted in nuclear condensation in MG-63 cells. DMC-induced apoptosis in MG-63 cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting results showed that Bcl-2 and Bcl-xL were downregulated, while Bax and Bad were upregulated by DMC in MG-63 cells. These results indicated that DMC inhibits cell proliferation and induces apoptotic cell death in MG-63 human osteosarcoma cells via the death receptor-mediated extrinsic apoptotic pathway and mitochondria-mediated intrinsic apoptotic pathway.

mTOR Signal Transduction Pathways Contribute to TN-C FNIII A1 Overexpression by Mechanical Stress in Osteosarcoma Cells

  • Zheng, Lianhe;Zhang, Dianzhong;Zhang, Yunfei;Wen, Yanhua;Wang, Yucai
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.118-125
    • /
    • 2014
  • Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migration. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients.

Inhibitory Effects of Chinese Pepper on the Mutagenicity and the Growth of MG-63 Humman Osteosarcoma Cells (초피 추출물의 항돌연변이 및 MG-63 암세포 증식억제 효과ㅤ)

  • 김소희;박건영
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.6
    • /
    • pp.628-634
    • /
    • 1993
  • The inhibitory effects of various extracts from Chinese pepper on the mutagenicity and the growth of MG-63 human osteosarcoma cells were studied. Chinese pepper was extracted with methanol and then the methanol extract was further fractionated by using hexane, chloroform, ethyl acetate and butanol. The methanol extract of Chinese pepper revealed the strong antimutagenic activity on the aflatoxin B1(AFB1) and N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) in Ames mutagenicity test and SOS chromotest.

  • PDF

Study on the Role of Estrogen Receptor-Alpha in Yak-Kong and Soybean Induced Proliferation of MG-63 Human Osteoblastie Cells (약콩 (Rhynchosia volubilis: 서목태) 및 대두 처리에 의한 MG-63 조골세포 증식 증가에서 ER$\alpha$의 역할에 대한 연구)

  • Um, So-Jung;Kang, In-Sook;Cho, Yun-Hi
    • Journal of Nutrition and Health
    • /
    • v.38 no.7
    • /
    • pp.512-520
    • /
    • 2005
  • Phytoestrogens, especially Yak-kong or soybean-derived isoflavones have been traditionally used as a supplement of estrogen for preventing postmenopausal osteoporosis in oriental folk medicine. In a previous study, we demonstrated that as Yak-kong and soybean increased MG-63 human osteoblastic cell proliferation, the expression of estrogen receptor $\alpha\;and\;beta\;(ER\;\alpha:\;ER\;\beta$) both were increased. However, the increased level of ER $\alpha$ is much higher than that of ER$\beta$. To determine whether the altered level of ER $\alpha$ expression affects Yak-kong or soybean induced MG-63 cell proliferation, we established cell lines stably expressing either ER $\alpha$ or antisense ER $\alpha$ RNAs. Increased expression of ER a in MG- 63 cells (ER $\alpha$-MG63) enhanced Yak-kong or soybean induced proliferation which paralleled with the enhanced expression of IGF-I. Inhibition of ER $\alpha$ expression by antisense $ER\;\alpha\;RNAs\;(As-ER\;\alpha-MG63$) caused these cells to insensitize Yak- kong or soybean induced proliferation and IGF-I expression. Furthermore, the comparable effects between Yak-kong and the combined treatment of genistein and daidzein at $0.5\;{\times}\;10^{-8}M$, which is a concentration of these two isoflavones similar to Yak-kong at 0.001 mg/ml, on cell proliferation and IGF-I expression in $ER\;\alpha-MG63\;or\;As-ER\;\alpha-MG63$ cells demonstrate that ER $\alpha$ plays an important, active role in MG-63 cell proliferation induced by phytoestrogens, especially Yak-kong or soybean derived isoflavones.

Comparative Estrogenic Effects of Yak-Kong and Soy Bean on the Proliferation of Human Osteoblastic Cell Line, MG-63 (MG 63 조골세포에서 약콩과 대두의 천연 에스트로겐 효과 비교)

  • 조윤희;박수진;신호정;장기효;강순아;조여원
    • Journal of Nutrition and Health
    • /
    • v.34 no.8
    • /
    • pp.905-911
    • /
    • 2001
  • Phytoestrogens, especially soy-derived isoflavones, are receiving great scrutiny as a food supplement for preventing hormone dependent diseases such as cardiovascular diseases, cancer, and osteoporosis. These beneficial effects of phytoestrogens are caused by functioning as partial agonists or antagonists of estrogens. In contrast to the common usage of soy bean, Yak-kong(Rhynchosia Molubilis ; ) has been used as supplements of estrogen fir preventing postmenopausal osteoporosis in Oriental medicine. To investigate estrogenic effects of Yak-kong and soy bean on the proliferation of MG-63 osteoblastic cells, each bean was extracted with 70% methanol and dried by freeze-drying. Yak-kong treatment of MG-63 cells resulted in an increase of cell proliferation to a maximum of 76% compared to 68% of soy bean treatment. Treatment of MG-63 cells with Yak-kong extract also resulted in an increase of transactivation of an ERE(estrogen response element)-luciferase reporter plasmid and IGF-I expression selectively. Despite increased effects of both bean treatments on the expression of estrogen receptor $\alpha$(ER$\alpha$) and $\beta$(ER$\beta$), soy bean treatment decreased transactivation of an ERE-luciferase reporter plasmid and did not further enhance IGF-I expression. Together, our data demonstrates that the greater estrogenic response of Yak-kong extract for MG-63 cell proliferation is mediated by ER derived transactivation of ERE and selective induction of IGF-I expression.

  • PDF

Inhibitory Effects of Ixeris Dentata on the Mutagenicity of Aflatoxin $B_1$, N-methyl-N연-nitro-N-nitrosoguanidine and the Growth of MG-63 Human Osteosarcoma Cells (씀바귀 추출물들의 돌연변이 유발 억제 및 MG-63 암세포 성장 저해 효과)

  • 김소희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.2
    • /
    • pp.305-312
    • /
    • 1995
  • Ixeris dentata was extracted with methanol and then the methanol extract was further fractionated to hexane, chloroform, ethyl acetate, butanol and aqueous fraction. The methanol extract of lxeris dentata had the strong antimutagenic effect on the aflatoxin B1(AFB1) and N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) in Ames mutagenicity test and SOS chromotest. Among the solvent extracted fractions from the methanol extract, the chloroform fraction exhibited the greatest antimutagenic effect suppressing the mutagenicity of AFB1 with inhibition rate of 74 percent. The methanol extract of Ixeris dentata also revealed the inhibitory effect on the growth of MG-63 human osteosarcoma cells after 6 days of breeding at 37℃. The chloroform fraction and the ethyl acetate fraction from the methanol extract of lxeris dentata were most effective and inhibited the growth of MG-63 cells by 97 and 93 percent, respectively. It is suggested that the inhibitory effects of lxeris dentata on the mutagenicity and the growth of MG-63 human osteosarcoma cells are strong in the lipid soluble fractions.

  • PDF

Bone Nodule Formation of MG63 Cells is Increased by the Interplay of Signaling Pathways Cultured on Vitamin $D_3$-Entrapped Calcium Phosphate Films

  • Choi, Yong-Seok;Hong, Yoon-Jung;Hur, Jung;Kim, Mee-Young;Jung, Jae-Young;Lee, Woo-Kul;Jeong, Sun-Joo
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2009
  • Since vitamin $D_3$ is an important regulator of osteoblastic differentiation, a presently-established vitamin $D_3$-entrapped calcium phosphate film (VCPF) was evaluated for hard tissue engineering. The entrapped vitamin $D_3$ more rapidly induced bone nodule formation. To characterize the cellular events leading to regulations including faster differentiation, signal transduction pathways were investigated in osteoblastic MG63 cells at a molecular level. Major signaling pathways for MG63 cell proliferation including phosphatidylinositol-3-kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and focal adhesion kinase pathways were markedly down-regulated when cells were cultured on calcium phosphate film (CPF) and VCPF. This agreed with our earlier observations of the immediate delay in proliferation of MG63 cells upon culture on CPF and VCPF. On the other hand, the p38 mitogen-activated protein kinase (p38 MAPK) and protein kinase A (PKA) pathways were significantly up-regulated on both CPF and VCPF. CPF alone could simulate differential behaviors of MG63 cells even in the absence of osteogenic stimulation and entrapment of vitamin $D_3$ within CPF further amplified the signal pathways, resulting in continued promotion of MG63 cell differentiation. Interplay of p38 MAPK and PKA signaling pathways likely is a significant event for the promotion of differentiation and mineralization of MG63 cells.