• Title/Summary/Keyword: MG/MS

Search Result 2,051, Processing Time 0.033 seconds

Enhancing in vitro Growth of Bulbs for Mass Propagation of Lily Germplasm

  • Song, Jae-young;Lee, Young-yi;Yi, Jung-yoon;Lee, Jung-ro;Yoon, Mun-sup
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Plants regenerated from in vitro cultures carry chromosomal variations, especially in long-term culture. Reducing the duration of plant tissue culture is one of the ways to reduce genetic and epigenetic changes. In this study, we reduced the duration of long-term culture and repeat subculture using small bulblets derived from bulb scales in two lily cultivars. The adventitious bulblets derived from bulb-scale tissue were cultured on three different media containing Murashige and Skoog (MS) basal medium supplemented with 1 g/L Charcoal, MS medium containing 0.3 mg/L IAA and 0.4 mg/L BA hormone with or without Charcoal, respectively. About seven weeks later, the number of newly propagated multiple shoots in the two media, A and B media, showed little differentiation. Compared to both media, the number of propagated multiple shoots increased 5-fold in MS medium containing 0.3 mg/L IAA and 0.4 mg/L BA hormone without Charcoal (C medium). The number of propagated multiple shoots ranged from 5 to 6 and 4 to 6 with an average of 5 in TropicalPink and GreenStar cultivars, respectively. The flow cytometric measurements indicated no variation in the ploidy level between control and in vitro propagated plants.

Profiling of the leaves and stems of Curcuma longa using LC-ESI-MS and HPLC analysis

  • Gia Han Tran;Hak-Dong Lee;Sun-Hyung Kim;Seok Lee;Sanghyun Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.338-344
    • /
    • 2023
  • Curcuma longa is a plant belonging to the genus Curcuma and is distributed across various Asian regions. This plant is widely known for its rhizomes, which possess a variety of pharmacological properties. However, although the leaves and stems of this plant also contain several health-promoting secondary metabolites, very few studies have characterized these compounds. Therefore, our study sought to quantify the secondary metabolites from the leaves and stems of Curcuma longa L. (LSCL) using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and high-performance liquid chromatography (HPLC). Our LC-ESI-MS analyses detected twenty-one phenolic compounds in the LSCL, among which fifteen compounds were detected via HPLC analysis. Four compounds, namely vanillic acid (0.129 mg/g), p-coumaric acid (0.431 mg/g), 4-methylcatechol (0.199 mg/g), and afzelin (0.074 mg/g) were then quantified. These findings suggest that LSCL is rich in secondary metabolites and holds potential as a valuable resource for the development of functional and nutritional supplements in the future.

Effects of Explant Parts and Plant Growth Regulators on the in vitro Propagation of Lycoris squamigera (상사화의 기내증식에 미치는 배양부위와 생장조절물질의 영향)

  • Eun, Jong-Seon;Kim, Young-Seon;Park, Jong-Suk;JIN, Song Nan;CAO, Hounan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.179-183
    • /
    • 2002
  • This study was carried out to investigate the influence of medium composition for in vitro mass propagation of Lycoris squamigera Max. After the disks of short stems, segments of leaf within bulb and scale were cultured on MS basal medium supplemented with various plant growth regulators, they were examined for the extent of callus formation, shoot and root regeneration. In the culture of stem disks, adventitious shoots were regenerated from the basal tissue of bulb scales, and combined medium of 1.0 mg/L 2,4-D or NAA+2.0 mg/L BA or kinetin showed the the best response and 4∼6 shoots per explant formed. In the culture of leaf segments within bulbs, both MS medium supplemented with 1.0 mg/L NAA+2.0 mg/L TDZ and with 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA were produced callus profusely on the base of leaf tissue and 3∼6 shoots were regenerated per explant. In the scale segments culture, calli were produced on the basal tissue on medium with 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA. The best result were shown on MS medium with 1.0 mg/L NAA+2.0 mg/L TDZ, and 1.0 mg/L 2,4-D+1.0∼2.0 mg/L BA. Maximum number of regenerated shoots was up to 10∼12. Adventitious root formation from explants were formed profusely on MS medium with 1.0 mg/L NAA+2.0 mg/L kinetin. The most desirable method for mass propagation of plantlets was the shoot regeneration from scale segments then subsequently subcultured on medium for rooting.

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.

Phenolic compounds in domestic and imported grape cultivars in Korea (국내산 포도와 수입산 포도의 페놀계화합물 함량)

  • Jung, Sung Min;Kim, Su Jin;Hur, Youn Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.205-211
    • /
    • 2020
  • In this study, fruit phenolics were investigated with using LC/MS and HPLC analysis in order to compare the differences between domestic ('Campbell Early', 'Kyoho', 'Heukbosuk', and 'Hongju SDS') and imported ('Crimson SDS' and 'Thomson SDS') grapes. In the case of fruit characteristics, imported grape 'Crimson SDS' and 'Thompson SDS', had lighter skin weight (300-350 mg/berry) and hard flesh (5.2-5.6 kg·f) than domestic grape cultivar. The phenolic compound contents of 'Crimson SDS' skin was higher, but resveratrol (25-29 mg/kg), quercetin (350-380 mg/kg), and myricetin (31-32 mg/kg) contents were similar in to those of 'Hongju SDS'. The anthocyanin content was different from differed between grape cultivars. 'Hongju SDS' grape was showed higher in Delphinidin-3-glucose (D3G) levels, and 'Crimson SDS' was showed higher in Peonidin-3-glucoside (P3G) levels. The contents of phenolic compounds were investigated differently for each grape berry part. Catechin, epicatechin, procyanidin B1, and B2 were found in grape seeds.

Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume

  • Choudhary, Kailash;Singh, M.;Rathore, M.S.;Shekhawat, N.S.
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.205-211
    • /
    • 2009
  • An efficient in vitro regeneration protocol for moth bean [Vigna aconitifolia (Jacq.) Marechal] via somatic embryogenesis has been developed. Embryogenic callus cultures were established from the cotyledonary node as explant on semi-solid Murashige and Skoog (MS) medium supplemented with $0.75mg\;1^{-1}$ 2,4-dichlorophenoxyacetic acid (2,4-D) and $1.5mg\;1^{-1}$ 6-benzylaminopurine (BA) and with various additives ($50mg\;1^{-1}$ ascorbic acid and $25mg\;1^{-1}$ each of adenine sulphate, citric acid and $_L-arginine$). Numerous somatic embryos differentiated on MS basal nutrient medium supplemented with $0.25mg\;1^{-1}$ 2,4-D and $0.5mg\;1^{-1}$ of kinetin (Kin). Sustained cell division resulted in the formation of cell aggregates, which progressed to the globular- and heart-shaped somatic embryos and then, if they differentiated properly, to the torpedo shape and cotyledonary stages. The transfer of embryos onto fresh MS basal medium containing $0.2mg\;1^{-1}$ BA and $2.0mg\;1^{-1}$ gibberellic acid enabled the embryos to achieve complete maturation and germination. More than 80% of somatic embryos were converted into true-to-type fertile plants. In vitro-regenerated plantlets with well-developed roots were successfully hardened in a greenhouse and established in soil.

Quality Characteristics of Sulgidduk Prepared with Different Levels of Defatted Mealworm Powder (탈지 밀웜 분말 첨가량을 달리하여 제조한 설기떡의 품질특성)

  • Shin, Seung-Mee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.523-530
    • /
    • 2019
  • This study was performed to develop Sulgidduk prepared with different levels (0, 3, 6, 9 and 12%) of defatted mealworm powder and to evaluate the characteristics of this Sulgidduk. We performed an assessment of color values, mechanical properties, general compositions and branched amino acids of Sulgidduk prepared with different levels of defatted mealworm powder. For the color values, the lightness(L) was decreased with increased amount of defatted mealworm powder, while the redness(a) and yellowness(b) were relatively increased. For the mechanical properties, the hardness and gumminess were significantly increased according to the increased amounts of defatted mealworm powder, but the chewiness, springiness and cohesiveness showed significant differences. For the sensory evaluation, the overall quality of Sulgidduk prepared with 6% defatted mealworm powder (MS-6) was higher as compared with that of the other Sulgidduk samples. For the general composition, the moisture and crude ash contents of MS-6 did not shown differences, while the crude protein was higher than those of the control, and the carbohydrate content of the control was higher than that of the MS-6. The contents of branched amino acids (valine, leucine and isoleucine) of MS-6 were higher than those of the control. Therefore, it was concluded that MS-6 could be a protein rich food as a good source of branched amino acids such valine, leucine and isoleucine.

Effect of Medium Components and Culture Methods on Prothallus Propagation of Pteridium aquilinum var. latiusculum (Desv.) Underw. ex Hell. (고사리 전엽체의 증식에 미치는 배지구성물질과 배양방법의 영향)

  • Shin, So-Lim;Lee, Moo-Yeul;Choi, Jae-Sun;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.22 no.4
    • /
    • pp.337-342
    • /
    • 2009
  • Present studies were conducted to evaluate the effects of medium strength(MS and Hyponex), carbon sources and their concentrations, agar concentrations, and inoculation amounts on prothallus propagation of Pterdium aquilinum var. latiusculum(Desv.) Underw. ex Hell in vitro. The optimum MS medium strength for prothallus propagation was 2MS concentration. Phosphate source was most effective for prothallus growth of P. aquilinum var. latisculum. The addition of 1% sucrose or glucose to MS medium promoted prothallus multiplication. Growth of prothallus was not affected by agar concentration. Propagation of homogenized prothallus was vigorous even in liquid medium. Chopped gametophytes(100 and 200 mg) were inoculated on 250 ml ${\Delta}$flask with 100 mL of 2MS concentration medium and suspension culture was done at 100 rpm for 22 days. After 20 days, prothallus multiplication slowed down, so 100 mg of chopped prothalli is recommended for initial inoculation, since initial amount of inoculum did not affect subsequent prothallus multiplication. Consequently after 20 days of suspension culture, prothallus should be subcultured or transplanted outside of growing vessels.

Rapid and Simultaneous Determination of Ginsenosides Rb1, Rb2, Rc and Re in Korean Red Ginseng Extract by HPLC using Mass/Mass Spectrometry and UV Detection

  • Kwon, Young-Min;Lee, Sung-Dong;Kang, Hyun-Sook;Cho, Mu-Gung;Hong, Soon-Sun;Park, Chae-Kyu;Lee, Jong-Tae;Jeon, Byeong-Seon;Ko, Sung-Ryong;Shon, Hyun-Joo;Choi, Dal-Woong
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.390-396
    • /
    • 2008
  • For evaluating the quality of ginseng, simple and fast analysis methods are needed to determine the ginsenoside content of the ginseng products. The aim of this study was therefore to optimize conditions for fast analysis of the ginsenosides, the active ingredients in extracts of Korean red ginseng. When tandem HPLC mass spectrometry (HPLC-MS/MS) was used, four forms of ginsenoside, Rb1, Rb2, Rc, and Re, were readily separated in seven minutes using a gradient mobile phase (acetonitrile and water containing acetic acid). This is the shortest separation time reported among the studies of major ginsenoside analysis. When gradient HPLC with UV detection was used, the detection limit was high, but separation of these four ginsenosides required 25 minutes using acetonitrile and water containing formic acid as a mobile phase. HPLC-MS/MS was able to separate ginsenoside Rg1 easily regardless of the mobile phase condition, but the HPLC-UV could not separate Rg1 because acetonitrile concentration in the mobile phase had to be maintained below 20%. Ginsenoside peaks were clearer and had more sensitive detection limits when Korean red ginseng extract was analyzed by the HPLC-MS/MS, but the UV detection was useful for chromatographic fingerprinting of all four major ginsenosides of the extract: Rb1, Rb2, Rc, and Re. Extracts were found to contain 2.17 mg, 1.51 mg, 1.29 mg, and 0.46 mg of ginsenoside Rb1, Rb2, Rc, Re, respectively, per gram weight. The ratios of each ginsenoside in the extracts were 1.0 : 0.7 : 0.6 : 0.2, respectively. Taken together, the results indicate that HPLC-MS/MS spectrometry could be the most useful method for rapid analysis of even small amounts of major ginsenosides, while HPLC with UV detection could also be used for rapid analysis of major ginsenosides and for quality control of ginseng products.

Determination of Phenol in Food using GC/MS (GC/MS를 이용한 식품 중 페놀 분석)

  • Kang, YoungWoon;Ahn, JiEun;Suh, JungHyuck;Park, Sunhee;Yoon, HaeJung
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.312-315
    • /
    • 2014
  • The present study demonstrated the development and validation of the method for the quantification of phenol in food using gas chromatography coupled with mass spectrometry (GC-MS). After spiking of internal standard (Phenol-$d_5$) to food, those samples were extracted with organic solvent mixture (acetone : dichloromethane = 1 : 1, v/v) using ultra sonic extractor and cleaned by gel permeation chromatography (GPC) technique. The amount of phenol was determined by GC/MS. To validate the developed method, we evaluated parameters were the selectivity, linearity, accuracy, precision, and recovery. To demonstrate the selectivity of the method, blank samples of rice, corn, and fish(mackerel) were prepared and subjected to GC-MS analysis. To verify the linearity of the method, six different standard concentrations of phenol at 0.01, 0.05, 0.1, 0.5, 1 and 2.5 mg/kg were evaluated. The correlation coefficient ($r^2$) of calibration curve was 0.9999. The recovery rate for phenol standard calculated by internal standard method were 82.2~101.5% for samples fortified with 0.25, 0.50, and 1.0 mg/kg, respectively. Also the repeatability and reproducibility for validation of precision were 0.2~5.5%. According to the result of the validation, this established method was suitable for AOAC guideline. The limit of detection (LOD) for phenol analysis were 0.03~0.1 mg/kg, and the limit of quantification (LOQ) were 0.1~0.3 mg/kg. Therefore, we established the optimal analysis method for determination of phenol in food using GPC and GC/MS.