• Title/Summary/Keyword: MFCS

Search Result 74, Processing Time 0.021 seconds

Distribution of Electrochemically Active Bacteria in the Sediment (Sediment에서의 전기활성 박테리아 분포 특성)

  • Son, Hyeng-Sik;Son, Hee-Jong;Kim, Mi-A;Lee, Sang-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1094-1101
    • /
    • 2010
  • Microbial fuel cells (MFC) were enriched using sediment Nakdong river, Hoidong river and protected water area in Gijang. The microbial community of sediment and enriched MFC was analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. ${\alpha}$-Proteobacteria, Acidobacter and Cyanobactia group were dominant in sediment by FISH. The coulombs of the final 10 peak of the 3 MFC (Nakdong, Hoidong, Gijang) were 0.64 C, 0.50 C, 0.61 C, respectively. When MFCs were enriched by sediment, ${\beta}$-, ${\gamma}$-Proteobacteria, Acidobacter and Firmicutes group increased 45~90%, 50~90%, 40~80% and 45~125%, respectively. In results of 16S rDNA sequencing, Roseomonas sp., Azospillium sp., Frateuria sp., Dyella sp., Enterobacter sp. and Deinocossus were isolated from Nakdong river and Azospillium sp., Delftia sp., Ralstonia sp., Klebsiella sp. and Deinococcus sp. were isolated from protected water area in Gijang and Pseudomonas sp., Klebsiella sp., Deinococcus sp., Leifsonia sp. and Bacillus sp. were isolated from Hoidong river.

Electric Power Generation and Treatment Efficiency of Organic Matter on Hydraulic Retention Time in Microbial Fuel Cell Reactor (미생물 연료전지 반응조의 수리학적 체류시간에 따른 유기물질 처리효율과 전력생산)

  • Choi, Chansoo;Lim, Bongsu;Xu, Lei;Song, Gyuho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.159-166
    • /
    • 2009
  • This study has been attempted to generate electricity, while simultaneously treating artificial organic wastewater using both batch and continuous microbial fuel cells (MFCs). In the batch MFC, current-voltage curve showed an onset potential of -0.69 V vs. Ag/AgCl. The potential range between this potential and 0 potential displayed an available voltage for an automatic production of electric energy and glucose, which was oxidized and treated at the same time. The 486 mg/L glucose solution showed the maximum power of $30mW/m^2$ and the maximum current density of $75mA/m^2$ shown in the power curve. As a result, discharging of the cell containing COD 423 mg/L at the constant current density of $60mA/m^2$ showed a continuous electricity generation for about 22 hours that dropped rapidly due to dissipating of organic material. Total electric energy production was 18.0 Wh. While discharging, the pH change was low and dropped from pH 6.53 to 6.20 then increased to 6.47, then stabilized at this charge. The COD treatment efficiency was found to be 72%. In the continuous MFC, COD removal tends to increase as the hydraulic retention time is increased. At one day of hydraulic retention time as the maximum value reaches the COD removal efficiency, power production rate and power production rate per COD removal that were obtained were 68.8%, $14mW/m^2$, and $20.8mW/m^2/g$ CODrm, respectively. In the continuous MFC, the power production rate per COD removal increases as the hydraulic retention time is increased and decreases as the organic loading rate is increased. At the values lower than an organic loading rate of $1kgCOD/m^3/d$, the values higher than about $18.1mW/m^2/g$ CODrm could be obtained.

Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell (연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성)

  • Kim, Jeong-Gu;Jeong, Yeon-Koo;Park, Song-In
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Two types of microbial fuel cells(MFC) were continuously operated using synthetic wastewater. One was conventional two-chambered MFC using proton exchange membrane(PEM-MFC), the other was upflow type membraneless MFC(ML-MFC). Graphite felt was used as a anode in PEM-MFC. In membraneless MFC, two MFCs were operated using porous RVC(reticulated vitreous carbon) as a anode. Graphite felt was used as a cathode in all experiments. In experiment of PEM-MFC, the COD removal rate based on the surface area of anode was about $3.0g/m^2{\cdot}d$ regardless of organic loading rate. And the coulombic efficiency amounted to 22.4~23.4%. The acetic acid used as a fuel was transferred through PEM from the anodic chamber to cathodic chamber. The COD removal rate in ML-MFC were $9.3{\sim}10.1g/m^2{\cdot}d$, which indicated the characteristics of anode had no significant effects on COD removal. Coulombic efficiency were 3.6~3.7 % in both cases of ML-MFC experiments, which were relatively small. It was also observed that the microbial growth in cathodic chamber had an adverse effects on the electricity generation in membraneless MFC.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.