• 제목/요약/키워드: MF(microfiltration) membrane

검색결과 109건 처리시간 0.021초

전해수를 이용한 견섬유 정련 및 세리신 회수(II)-분리막에 의한 세리신 농축을 중심으로- (The Degumming and Sericin Recovery of the Silk fabric Using the Electrolytic Water(II))

  • 배기서;이태상;노덕길;홍영기
    • 한국염색가공학회지
    • /
    • 제16권4호
    • /
    • pp.10-18
    • /
    • 2004
  • In this work, Aqueous sericin solution was prepared by degumming process with electrolytic reduction water. Then, the microfiltration and ultrafiltration systems were applied to the concentration of aqueous sericin solution. The objective of this study was to select the optimum operating condition among the different pressure. The permeate flux and rejection ratio were observed with time, pressure, flow rate and concentration. and, the wastewater and permeated water quality values such as pH, BOD, COD, and NH levels were measured. In order to see the influence of electrolytic reduction water, the flux of pure water and electrolytic reduction water by PVDF22(MF) and PS100(UF) membrane was measured. In microfiltration system, the relative flux reduction decreased rapidly to 0.02 in the 30min, as the concentration polarization and gel layer formation were increased. and then the sericin concentration rejection ratio was 40%. In ultrafiltration system, the permeate flux decreased with time and concentration, and increased with the operating pressure and flow rate. Optimal condition in PS100 membrane system for sericin concentration was operating pressure 1.464kgf/$cm^24, operating flow rate $7\ell/min at\; 40^{\circ}C$. At that time, sericin concentration rejection ratio was 83% respectably. The sericin solution was concentrated from 0.1wt% solution to 0.2 wt % solution during about 2 hrs by the UF filteration membrane system.

MEMBRANE PROCESSES IN ENVIRONMENTAL TECHNOLOGY

  • Blume, I.;Smolders, C.A.
    • 멤브레인
    • /
    • 제2권1호
    • /
    • pp.1-20
    • /
    • 1992
  • Classical membrane processes like microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO) are being applied in the last years more frequently in environmental and effluent process problems. Newer technologies and developments like pervaporation (PV) and gas sepaxation (GS) recently found commercial applications in the treatment of waste waters and gas streams. The incentive here is either the clean-up from organic components to comply with federal emission regulations or the recovery of the organics for economical reasons. Processes still in their development stage are combinations of chemical reactions with membrane processes to separate and treat $SO_x$ and $NO_x$ laden waste gas streams in the clean-up of stack-gases. In this paper we will first give a short overview of the more recent developments in MF, UF and RO. This is followed by a closer look on newer technologies applied in environmental problems. The applications looked at are the recovery of organic components from solvent laden gas streams and the separation of organic volatiles from aqueous waste waters via pervaporation. Technical solutions, the advantages and disadvantages of the processes and. where possible, cost estimations will be presented.

  • PDF

$TiO_2$로 전처리한 아크릴 폐수의 Membrane Hybrid System에의 적용 (Application in Membrane Hybrid System with Acrylic Wastewater Pretreated by $TiO_2$)

  • 이광현;강병철;이종백;이강춘
    • 멤브레인
    • /
    • 제19권3호
    • /
    • pp.183-188
    • /
    • 2009
  • 아크릴폐수를 광촉매로 전처리하여 막오염인자를 최소화 한 후 막조합공정에 적용하였다. 한외여과막과 정밀여과막을 역삼투막과 조합을 이루어 막조합공정을 구성하였으며 광촉매처리수를 온도 및 압력변화에 따라 막조합공정에 적용하여 분리특성을 확인하였다. 정밀여과막 모듈 혹은 한외여과막 모듈의 투과수는 역삼투모듈로 보내지며 역삼투 모듈의 최종적인 투과량은 모듈 set 2 (MWCO 200,000 UF+RO)의 역삼투 모듈이 우수하였다. UF 및 MF 모듈에서 TDS, T-N 및 COD의 제거효율은 온도 및 압력변화에 영향을 받지 않고 제거효율 또한 낮음을 알 수 있었다. 그러한 결과로 RO 모듈에서 TDS, T-N 및 COD가 우수한 제거효율을 보였다. UF 및 MF모듈에서의 탁도 제거효율은 우수한 경향(제거효율 99% 이상)을 보였다. 막조합공정에서 처리된 광촉매처리수는 배출 허용기준치를 충족하고, 재활용이 가능하였다.

극저농도 NDMA(N-nitrosodimethylamine) 물리적/생물학적 처리 효율 비교 평가 (Evaluation and Comparative Physical/Biological Removal Performance for Extremely Low-Concentration NDMA(N-nitrosodimethylamine))

  • 박세용;김희주;김문일
    • 한국지반환경공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.55-61
    • /
    • 2011
  • NDMA(N-Nitrosodimethylamine)는 극저농도(10ng/L)에서도 암을 일으킬 수 있는 물질로 알려져 있지만, 기존의 NDMA 제거율 평가 연구는 고농도의 NDMA를 대상으로 한 것이 대부분이었다. 따라서 극저농도의 NDMA 제거효율 평가가 필요하며 그 기초연구로써 호기성/혐기성 조건에서의 분말활성탄, GS(Granular Sludge), MF(Microfiltration), UF(Ultrafiltration)를 이용한 제거효율과 Silica gel(MCM-41, Diatomite, Spherical silica gel)을 이용한 제거효율을 평가하였다. 그 결과 혐기성 조건에서 GS, PAC를 접촉한 후 UF membrane을 이용한 고액분리가 65%의 제거율로 가장 높았으며, Silica gel(MCM-41)이 6%의 제거율로 가장 낮았다. 본 연구는 극저농도의 NDMA 제거의 기초 연구로서 향후 관련 연구의 기초자료로써 활용을 기대한다.

머신러닝을 활용한 세라믹 정밀여과 파일럿 플랜트의 파울링 조기 경보 방법 (An early fouling alarm method for a ceramic microfiltration pilot plant using machine learning)

  • 탁도현;김동건;전종민;김수한
    • 상하수도학회지
    • /
    • 제37권5호
    • /
    • pp.271-279
    • /
    • 2023
  • Fouling is an inevitable problem in membrane water treatment plant. It can be measured by trans-membrane pressure (TMP) in the constant flux operation, and chemical cleaning is carried out when TMP reaches a critical value. An early fouilng alarm is defined as warning the critical TMP value appearance in advance. The alarming method was developed using one of machine learning algorithms, decision tree, and applied to a ceramic microfiltration (MF) pilot plant. First, the decision tree model that classifies the normal/abnormal state of the filtration cycle of the ceramic MF pilot plant was developed and it was then used to make the early fouling alarm method. The accuracy of the classification model was up to 96.2% and the time for the early warning was when abnormal cycles occurred three times in a row. The early fouling alram can expect reaching a limit TMP in advance (e.g., 15-174 hours). By adopting TMP increasing rate and backwash efficiency as machine learning variables, the model accuracy and the reliability of the early fouling alarm method were increased, respectively.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • 제9권4호
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.

Effect of $N_2$-backflushing Time in Carbon Ceramic UF & MF System for Paper Wastewater Treatment

  • Park, Jin-Yong
    • Korean Membrane Journal
    • /
    • 제7권1호
    • /
    • pp.34-41
    • /
    • 2005
  • The wastewater discharged from a paper plant was filtrated by 3 kinds of tubular carbon ceramic UF and MF membranes with $N_2$-backflushing. The filtration time (FT) was fixed at 8 min or 16 min, and $N_2$-backflushing time (BT) was changed in 0${\~}$60 sec. The optimal condition was discussed in the viewpoints of total permeate volume ($V_T$), dimensionless permeate flux (J/Jo) and resistance of membrane fouling ($R_f$). In the viewpoints of $V_T$, J/Jo and $R_f$, the optimal $N_2$-BT was 40 sec at both FT for M9 (MWCO: 300,000 Daltons) and C005 ($0.05{\mu}m$) membranes. However, for C010 ($0.1{\mu}m$) it was 10 sec at FT=8 min, and 20 sec at FT=16 min in the viewpoints of J/Jo and $R_f$, and 5 sec at both FT in the viewpoints of $V_T$. It means that the short $N_2$-BT could reduce the membrane fouling and recover the permeate flux sufficiently for MF membrane having a large pore size as C010. Average rejection rates of pollutants were higher than $99.0\%$ for turbidity and $22.8{\~}59.6\%$ for $COD_{cr}$, but rejection rates of total dissolved solid (TDS) were lower than $8.9\%$. Therefore, the low turbidity water purified in our system could be reused for paper process.

광촉매 반응과 침지형 정밀여과를 이용한 자연산 유기물의 제거 (Use of a Combined Photocatalysis/Microfiltration System for Natural Organic Matter Removal)

  • 추광호;박경원;김문현
    • 멤브레인
    • /
    • 제14권2호
    • /
    • pp.149-156
    • /
    • 2004
  • 본 연구에서는 광촉매 반응과 막분리 기술을 접목시킨 혼성 고도 정수처리 공정에서 소독 부산물의 전구체로 알려진 자연산 유기물을 효과적으로 제거하고자 하였고 다양한 운전 조건에서 시스템의 성능을 비교 평가하였다. 자연산 유기물은 흡입여과 방식의 분리막과 TiO$_2$ 광촉매를 이용하여 광분해하였을 때 광촉매 투입량의 증가에 따라 반응속도가 증가하였지만 과량의 촉매 주입시에는 반응 속도 향상에 오히려 부정적으로 작용하였다. 자연산 유기물을 보다 효과적으로 제거하기 위해 산화철 주입, TiO$_2$ 표면처리, 분리막 표면코팅을 시도하여 제거특성 및 운전에 따른 막여과 특성을 평가하였다. 산화철 주입은 초기에 흡착작용으로 인해 제거율 증가를 보였으나 반응이 진행됨에 따라 산화철 입자에 의한 광산란으로 광분해 효율이 오히려 감소되었다. 산화철 입자에 의한 광산란을 제어하고자 TiO$_2$ 표면을 광처리와 열처리 방법을 이용해 철을 직접 부착시킨 경우 긍정적인 효과를 얻지 못했다. 그러나 산화철로 막표면을 코팅하여 광산란 효과를 배제시킨 경우에는 향상된 결과를 보였다 막투과 플럭스 15 L/$m^2$-h에서 정밀여과를 수행하였을 때 TiO$_2$나 산화철에 의한 막오염은 거의 일어나지 않았고 안정된 막투과도를 나타내었다.

Baker's yeast로부터 invertase 및 yeast extract 동시 생산공정 (Simultaneous Production of Invertase and Yeast Extract from Baker's Yeast)

  • 최순자;정봉현
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.308-311
    • /
    • 1998
  • A novel process was developed to simultaneously produce invertase and yeast extract from baker's yeast using ultrafiltration (UF) and microfiltration (MF) membrane processing. After the extraction of invertase under the optimal condition obtained in this study, invertase was separated from yeast cells using a hollow fiber membrane with a pore size of 0.1 $\mu\textrm{m}$. The resulting permeate containing invertase was concentrated using a hollow fiber membrane with a nominal molecular weight cut-off of 30 kDa. The yeast cell and permeate solutions, which were obtained after MF and UF membrane processing, respectively, were mixed together, and the autolysis was performed at 50$^{\circ}C$ in the presence of 5% (w/v) ethanol and 1% (w/v) NaCl. As a result, the yeast extract and invertase could be simultaneously produced from baker's yeast by this novel process.

  • PDF

D댐수를 이용한 정밀여과 공정에서 막오염 특성 및 최적 화학세정방법 조사 (Characterization of Membrane Fouling and It's Optimal Chemical Cleaning Method in MF Process using D dam water)

  • 김충환;임재림;이병구;채선하;박민구;박상훈
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.559-569
    • /
    • 2007
  • The purposes of this study were to find the main foulant of membrane and the optimal chemical cleaning method for MF(microfiltration) drinking water treatment system using D dam water as water source. The MF pilot plant which can treat maximum $500m^3/d$ consisted of 3 racks and was operated for 10 months under various operation conditions. After 10 months operation, $1^{st}$ and $2^{nd}$ rack of membrane pilot plant system were cleaned chemically and the degree of the restoration of the fouled membrane in terms of the pure water flux was detemnined. Inorganic compounds which contained in chemical cleaning waste was analyzed by Inductively Coupled Plasma (ICP). One membrane module for 3rd rack was disjointed and membrane fouling materials, especially inorganic compounds were investigated by Electron Probe Microanlysis (EPMA) to elucidate the reason of TMP increase. And also, the various chemical reagents (1N HCl or $H_2SO_4$, oxalic acid as acid and 0.3% NaOCl as alkali) were tested by combination of acid and alkali to determine the optimal chemical cleaning method for the MF system using micro-modules manufactured using the disjointed module. It was verified that the inside and outside of membrane module was colorized with black. As a result of the quantitative and semi-qualitative analysis of membrane foulant by ICP, most of inorganic foulant was manganese which is hard to remove by inorganic acid such as HCI. Especially, it was observed by EPMA that Mn was attached more seriously in inside surface of membrane than in outside surface of that. It was supposed that Mn fouling in inside surface of membrane might be caused by the oxidation of soluble manganese (Mn(II)) to insoluble manganese ($MnO_2$) by chlorine containing in backwashing water. The optimal cleaning method for the removal of manganese fouling was consecutive cleaning with the mixture of 1N HCl and 1% of oxalic acid, 0.3% NaOCl, and 1N HCl showing 91% of the restoration of the fouled membrane.