• Title/Summary/Keyword: METRI

Search Result 77, Processing Time 0.026 seconds

Determination of the Lidar Ratio Using the GIST / ADEMRC Multi-wavelength Raman Lidar System at Anmyeon Island (GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구)

  • Noh Young Min;Kim Young Min;Kim Young Joon;Choi Byoung Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 2006
  • Tropospheric aerosols are highly variant in time and space due to non-uniform source distribution and strong influence of meteorological conditions. Backscatter lidar measurement is useful to understand vertical distribution of aerosol. However, the backscatter lidar equation is undetermined due to its dependence on the two unknowns, extinction and backscattering coefficient. This dependence necessitates the exact value of the ratio between two parameters, that is, the lidar ratio. Also, Iidar ratio itself is useful optical parameter to understand properties of aerosols. Tropospheric aerosols were observed to understand variance of lidar ratio at Anmyeon island ($36.32^{/circ}N$, $126.19^{/circ}E$), Korea using a multi-wavelength raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea during measurement periods; March 15$\sim$April $16^{th}$, 2004 and May 24$\sim$ $8^{th}$ 2005. Extinction coefficient, backscattering coefficient, and lidar ratio were measured at 355 and 532 nm by the Raman method. Different types of aerosol layers were distinguished by the differences in the optical properties such as Angstrom exponent, and lidar ratio. The average value of lidar ratio during two observation periods was found to be $50.85\pm4.88$ sr at 355 nm and $52.43\pm15.15$ sr at 532 nm at 2004 and $57.94\pm10.29$ sr at 355 nm and $82.24\pm15.90$ sr at 532 nm at 2005. We conduct hysplit back-trajectory to know the pathway of airmass during the observation periods. We also calculate lidar ratio of different type of aerosol, urban, maritime, dust, continental aerosols using OPAC (Optical Properties of Aerosols and Clouds), Remote sensing of atmospheric aerosol using a multi-wavelengh lidar system with Raman channels is quite and powerful tool to characterize the optical propertises of troposheric aerosols.

Geophysical Responses of the Yangsan Fault Zone at Eonyang Area (언양 일대 양산단층에서의 지구물리학적 반응)

  • Kwon Byung-Doo;Lee Heuisoon;Lee Choon-Ki;Park Gyesoon;Oh Seokhoon;Lee Duk Kee
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.436-442
    • /
    • 2005
  • We have performed multiple geophysical surveys comprised of gravity, magnetic and resistivity methods at the Yangsan fault zone which runs through the Eonyang area, the eastern part of Kyeongsang in southeast Korea. The gravity and magnetic data provide information about geological structures. Furthermore, sections of electrical resistivity show the sharp contrast of electrical resistivity distribution across the fault zone. Since the fractured zone tends to be more conductive than fresh host rocks, the electrical resistivity survey is effective in determining the detailed structure of the fault zone. We have made gravity measurements at a total of 71 points alongside two profiles across the fault zone, and carried out an electrical resistivity survey with a dipole-dipole array at the same location using 40m dipole length. In addition, we have analyzed the aeromagnetic data on the corresponding area. The multiple geophysical properties appear to be abruptly changed in electrical resistivity, gravity and aeromagneticclearly show the different appearance across the fault zone. The fault is identified by its sub vertical attitude which is well known in the Yangsan fault zone. We have also confirmed that the magnitude of the response of the fault is much larger in the southern part of the survey area than the northern area. These results most likely to provide basic information for the further studies about the physical properties and the structures at the Yangsan fault.

Preliminary Analysis of Intensive Observation Data Produced by the National Center for Intensive Observation of Severe Weathers (NCIO) in 2002 (2002년 국가 악기상 집중관측센터에서 생산된 집중관측자료의 분석 및 활용)

  • Kim, Baek-Jo;Cho, Chun-Ho;Nam, Jae-Cheol;Chung, Hyo-Sang;Kim, Jeong-Hoon
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2003
  • The National Center for Intensive Observation of Severe Weathers (NCIO) as a part of METRI's principal project "Korea Enhanced Observing Period; KEOP" was established at Haenam Weather Observatory in order to effectively monitor and observe heavy rainfall in summer, which is essential for the identification of the structure and evolution mechanism of mesoscale severe weather system. The intensive field-based experiments in 2002 within southwestern Korea toward various meteorological phenomena ranging from heavy rainfall to snowfall were conducted in collaboration with KMA(Korea Meteorological Administration) and universities. In this study, preliminary analysis results using intensive observation data obtained from these experiments are presented together with the introduction of NCIO and its operational structure.

Zooplankton Community in the Front Zone of the East Sea (the Sea of Japan), Korea : 2. Relationship between Abundance Distribution and Seawater Temperature (동해 전선역 동물플랑크톤 군집 : 2. 수온과 분포의 관계)

  • PARK Chul;LEE Chang Rae;KIM Jeong Chang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.749-759
    • /
    • 1998
  • Distribution of zooplankton abundance was studied in the front zone in the East Sea in November, 1996, Averaged total abundance in the front zone was less than that in the nearby cold surface water areas but more than that in the nearby warm surface water areas. The number of taxa was the greatest in the upper layer of mixing. Abundance and the number of tun in the front zone were contributed by the cold water and the warm water, respectively. Inspite of the differences in sampling time (day vs night), the species composition and abundance distribution were similar at two sites within cold or warm water area, However, they were quite different at two sites in the front zone although the sampling time of the day was the same. from this, the history of mixing was believed to be the most important factor for the species composition and abundance distribution in the front zone. Zooplankton distribution in the study area was mainly controlled by the dominant cold water Copepod Species Metridia paoifica, the only taxon that showed significant diet vertical migration. Most other taxa showed no significant diel vortical migration, Seawater temperature also affected zooplankton distribution. Positive correlations in the warm area, weak negative correlations in the cold water area, and no significant correlation in the front zone were obtained in general between the seawater temperature and the abundances of the major taxa.

  • PDF

Fog Detection over the Korean Peninsula Derived from Satellite Observations of Polar-orbit (MODIS) and Geostationary (GOES-9) (극궤도(MODIS) 및 정지궤도(GOES-9) 위성 관측을 이용한 한반도에서의 안개 탐지)

  • Yoo, Jung-Moon;Yun, Mi-Young;Jeong, Myeong-Jae;Ahn, Myoung-Hwan
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.450-463
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas within the Korean Peninsula have been derived from the data of polar-orbit Aqua/Terra MODIS and geostationary GOES-9 during a two years. The values are obtained from reflectance at $0.65{\mu}m\;(R_{0.65})$ and the difference in brightness temperature between $3.7{\mu}m\;and\;11{\mu}m\;(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following four parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul metropolitan area: brightness temperature at $3.7{\mu}m$, the temperature at $11{\mu}m,\;the\;T_{3.7-11}$ for day and night, and the $R_{0.65}$ for daytime. The parameters show significant correlations (r<0.5) in spatial distribution between the two kinds of satellites. The discrepancy between their infrared thresholds is mainly due to the disagreement in their spatial resolutions and spectral bands, particularly at $3.7{\mu}m$. Fog detection from GOES-9 over the nine airport areas except the Cheongju airport has revealed accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification. The accuracy decreases in foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog. The sensitivity of radiance and reflectance with wavelength has been analyzed in numerical experiments with respect to various meteorological conditions to investigate optical characteristics of the three channels.

Snow Influence on the Chemical Characteristics of Winter Precipitation (강설이 겨울철 강수의 화학적 특성에 미치는 영향)

  • Kang, Gong-Unn;Kim, Nam-Song;Oh, Gyung-Jae;Shin, Dae-Yewn;Yu, Du-Cheol;Kim, Sang-Baek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • To know the differences in ionic compositions in rain and snow as well as snow influence on the chemical characteristics of winter precipitation, precipitation samples were collected by the wet-only automatic precipitation sample, in winter(November-February) in the Iksan located in the northwest of Chonbuk from 1995 to 2000. The samples were analyzed for concentrations of water-soluble ion species, in addition to pH and electrical conductivity. The mean pH of winter precipitation was 4.72. According to the type of winter precipitation, the mean pH of rain was 4.67 and lower than 5.05 in snow. The frequencies of pH below 5.0 in rain were about 73%, while those in snow were about 30%. Snow contained 3 times higher concentrations of sea salt ion components originated from seawater than did rain in winter, mainly $Cl^-,\;Na^+$, and $Mg^{2+}$. Neglecting sea salt ion components, $nss-SO_4^{2-}$ and $NO_3^-$ were important anions and $NH_4^+$ and $nss-Ca^{2+}$ were important cations in both of rain and snow. Concentrations of $nss-SO_4^{2-}$ was 1.3 times higher in rain than in snow, while those of $nss-Ca^{2+}$ and $NO_3^-$ were 1.5 and 1.3 times higher in snow, respectively. The mean equivalent concentration ratio of $nss-SO_4^{2-}/NO_3^-$ in winter precipitation were 2.4, which implied that the relative contribution of sulfuric and nitric acids to the precipitation acidity was 71% and 29%, respectively. The ratio in rain was 2.7 and higher than 1.5 in snow. These results suggest that the difference of $NO_3^-$ in rain and snow could be due to the more effective scavenging of $HNO_3$ vapor than particulate sulfate or nitrate by snow. The lower ratio in snow than rain is consistent with the measurement results of foreign other investigators and with scavenging theory of atmospheric aerosols. Although substantial $nss-SO_4^{2-}$ and $NO_3^-$ were observed in both of rain and snow, the corresponding presence of $NH_4^+,\;nss-Ca^{2+},\;nss-K^+$ suggested the significant neutralization of rain and snow. Differences in chemical composition of non-sea salt ions and neutralizing rapacity of $NH_4^+,\;nss-Ca^{2+}$, and $nss-K^+$ between rain and snow could explain the acidity difference of rain and snow. Snow affected that winter precipitation could be less acidic due to its higher neutralizing rapacity.

Intercomparison of Daegwallyeong Cloud Physics Observation System (CPOS) Products and the Visibility Calculation by the FSSP Size Distribution during 2006-2008 (대관령 구름물리관측시스템 산출물 평가 및 FSSP를 이용한 시정환산 시험연구)

  • Yang, Ha-Young;Jeong, Jin-Yim;Chang, Ki-Ho;Cha, Joo-Wan;Jung, Jae-Won;Kim, Yoo-Chul;Lee, Myoung-Joo;Bae, Jin-Young;Kang, Sun-Young;Kim, Kum-Lan;Choi, Young-Jean;Choi, Chee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.65-73
    • /
    • 2010
  • To observe and analyze the characteristics of cloud and precipitation properties, the Cloud physics Observation System (CPOS) has been operated from December 2003 at Daegwallyeong ($37.4^{\circ}N$, $128.4^{\circ}E$, 842 m) in the Taebaek Mountains. The major instruments of CPOS are follows: Forward Scattering Spectrometer Probe (FSSP), Optical Particle Counter (OPC), Visibility Sensor (VS), PARSIVEL disdrometer, Microwave Radiometer (MWR), and Micro Rain Radar (MRR). The former four instruments (FSSP, OPC, visibility sensor, and PARSIVEL) are for the observation and analysis of characteristics of the ground cloud (fog) and precipitation, and the others are for the vertical cloud characteristics (http://weamod.metri.re.kr) in real time. For verification of CPOS products, the comparison between the instrumental products has been conducted: the qualitative size distributions of FSSP and OPC during the hygroscopic seeding experiments, the precipitable water vapors of MWR and radiosonde, and the rainfall rates of the PARSIVEL(or MRR) and rain gauge. Most of comparisons show a good agreement with the correlation coefficient more than 0.7. These reliable CPOS products will be useful for the cloud-related studies such as the cloud-aerosol indirect effect or cloud seeding. The visibility value is derived from the droplet size distribution of FSSP. The derived FSSP visibility shows the constant overestimation by 1.7 to 1.9 times compared with the values of two visibility sensors (SVS (Sentry Visibility Sensor) and PWD22 (Present Weather Detect 22)). We believe this bias is come from the limitation of the droplet size range ($2{\sim}47\;{\mu}m$) measured by FSSP. Further studies are needed after introducing new instruments with other ranges.