• 제목/요약/키워드: MEMS Infrared Sensor

검색결과 22건 처리시간 0.018초

Electro-Thermal Modeling and Experimental Validation of Integrated Microbolometer with ROIC

  • Kim, Gyungtae;Kim, Taehyun;Kim, Hee Yeoun;Park, Yunjong;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.367-374
    • /
    • 2016
  • This paper presents an electro-thermal modeling of an amorphous silicon (a-Si) uncooled microbolometer. This modeling provides a comprehensive solution for simulating the electro-thermal characteristics of the fabricated microbolometer and enables electro-thermal co-simulation between MEMS and CMOS integrated circuits. To validate this model, three types of uncooled microbolometers were fabricated using a post-CMOS surface micromachining process. The simulation results show a maximum discrepancy of 2.6% relative to the experimental results.

마이크로 스펙트로미터 적외선 센서용 저응력 $Si_3N_4$ Membrane 상에서의 Thermopile 제조 및 특성 (Fabrication and Characterization of Thermopile on Low-Stress $Si_3N_4$ Membrane for Microspectrometer Infrared Sensor)

  • 최공희;박광범;박준식;정관수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.781-784
    • /
    • 2005
  • Twenty four types of thermopile for micro spectrometer infrared sensors were fabricated on low-stress $Si_3N_4$ membranes with $1.2{\mu}m-thickness$ using MEMS technology. Poly-Si thin film with thickness of 3500 ${\AA}$ as the first thermocouple material, was deposited by LPCVD method. And aluminum thin film with thickness of 6000 ${\AA}$ as the second thermocouple material, was deposited by sputtering method. Thermopile were designed and fabricated for optimum conditions by five parameters of thermocouple numbers (16 ${\sim}$ 48), thermocouple line widths (10 ${\mu}m$ ${\sim}$ 25 ${\mu}m$), thermocouple lengths (100 ${\mu}m$ ${\sim}$ 500 ${\mu}m$), membrane areas ($1^2\;mm^2$ ${\sim}$ $2.5^2\;mm^2$) and junction areas (150 ${\mu}m^2$ ${\sim}$ 750 ${\mu}m^2$), respectively. Electromotive forces of fabricated thermopile were measured 1.1 mV ${\sim}$ 7.4 mV at $400^{\circ}C$. It was thought that measurement results could be used for thermopile infrared sensors optimum structure for micro spectrometers.

  • PDF