• Title/Summary/Keyword: MEMS Gyroscope

Search Result 75, Processing Time 0.031 seconds

Effects of Package Induced Stress on MEMS Device and Its Improvements (패키징으로 인한 응력이 MEMS 소자에 미치는 영향 분석 및 개선)

  • Choa Sung-Hoon;Cho Yong Chul;Lee Moon Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.165-172
    • /
    • 2005
  • In MEMS (Micro-Electro-Mechanical System), packaging induced stress or stress induced structure deformation becomes increasing concerns since it directly affects the performance of the device. In the decoupled vibratory MEMS gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, packaged using the anodic bonding at the wafer level and EMC (epoxy molding compound) molding, has a deformation of MEMS structure caused by thermal expansion mismatch. This effect results in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) process technology. It uses a silicon wafer and two glass wafers to minimize the wafer warpage. Thus the warpage of the wafer is greatly reduced and the frequency difference is more uniformly distributed. In addition. in order to increase robustness of the structure against deformation caused by EMC molding, a 'crab-leg' type spring is replaced with a semi-folded spring. The results show that the frequency shift is greatly reduced after applying the semi-folded spring. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

Deformation Behavior of MEMS Gyroscope Package Subjected to Temparature Change (온도변화에 따른 MEMS 자이로스코프 패키지의 변형측정)

  • Joo, Jin-Won;Choi, Yong-Seo;Choa, Sung-Hoon;Song, C.M.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1407-1412
    • /
    • 2003
  • In MEMS devices, packaging induced stress or stress induced structure deformation become increasing concerns since it directly affects the performance of the device. In this paper, deformation behavior of MEMS gyroscope package subjected to temparature change is investigated using high-sensitivity $Moir{\acute{e}}$ interferometry. Using the real-time $Moir{\acute{e}}$ setup, fringe patterns are recorded and analyzed at several temperatures. Temperature dependent analyses of warpages and extensions/contractions of the package are presented. Linear elastic behavior is documented in the temperature region of room temperature to $125^{\circ}C$. Analysis of the package reveals that global bending occurs due to the mismatch of thermal expansion coefficient between the chip, the molding compond and the PCB.

  • PDF

A High Yield Rate MEMS Gyroscope with a Packaged SiOG Process (SiOG 공정을 이용한 고 신뢰성 MEMS 자이로스코프)

  • Lee Moon Chul;Kang Seok Jin;Jung Kyu Dong;Choa Sung-Hoon;Cho Yang Chul
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.187-196
    • /
    • 2005
  • MEMS devices such as a vibratory gyroscope often suffer from a lower yield rate due to fabrication errors and the external stress. In the decoupled vibratory gyroscope, the main factor that determines the yield rate is the frequency difference between the sensing and driving modes. The gyroscope, fabricated with SOI (Silicon-On-Insulator) wafer and packaged using the anodic bonding, has a large wafer bowing caused by thermal expansion mismatch as well as non-uniform surfaces of the structures caused by the notching effect. These effects result in large distribution in the frequency difference, and thereby a lower yield rate. To improve the yield rate we propose a packaged SiOG (Silicon On Glass) technology. It uses a silicon wafer and two glass wafers to minimize the wafer bowing and a metallic membrane to avoid the notching. In the packaged SiOG gyroscope, the notching effect is eliminated and the warpage of the wafer is greatly reduced. Consequently the frequency difference is more uniformly distributed and its variation is greatly improved. Therefore we can achieve a more robust vibratory MEMS gyroscope with a higher yield rate.

  • PDF

An Electromechanical ${\sum}{\triangle}$ Modulator for MEMS Gyroscope

  • Chang, Byung-Su;Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tea-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1701-1705
    • /
    • 2004
  • This paper presents a design and analysis of electromechanical sigma-delta modulator for MEMS gyroscope, which enables us to control the proof mass and to obtain an exact digital output without additional A/D conversion. The system structure and the circuit realization of the sigma-delta modulation are simpler than those of the analog sensing and feedback circuit. Based on the electrical sigma-delta modulator theory, a compensator is designed to improve the closed loop resolution of the sensor. With the designed compensator, we could obtain enhanced closed-loop performances of the gyroscope such as larger bandwidth, lower noise, and digital output comparing with the results of analog open-loop system.

  • PDF

Design, Fabrication and Performance Test of A Non-Vacuum Packaged Single Crystalline Silicon MEMS Gyroscope (대기압형 단결정 실리콘 MEMS 각속도계의 설계, 제작 및 성능 측정)

  • Jung, Hyoung-Kyoon;Hwang, Young-Seok;Sung, Woon-Tahk;Chang, Hyun-Kee;Lee, Jang-Gyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1635-1636
    • /
    • 2006
  • In this paper, a non-vacuum packaged single crystalline silicon MEMS gyroscope is designed, fabricated and tested. To reduce air damping of the gyroscope structure for non-vacuum packaging, air damping model is used and damping is minimized by analysis. The inner and outer spring length is optimized by ANSYS simulation for rigid body motion. The gyroscope is fabricated by SiOG(Silicon On Glass) process. The performance of the gyroscope is measured to evaluate the characteristic of the gyroscope. The sensitivity, non-linearity, noise density and the bias stability are measured to 9.7693 mV/deg/s, 04265 %, 2.3 mdeg/s/rtHz and 16.1014 deg/s, respectively.

  • PDF

Reliability Assessment and Improvement of MEMS Vacuum Package with Accelerated Degradation Test (ADT) (가속열화시험을 적용한 MEMS 진공패키지의 신뢰성 분석 및 개선)

  • 최민석;김운배;정병길;좌성훈;송기무
    • Journal of Applied Reliability
    • /
    • v.3 no.2
    • /
    • pp.103-116
    • /
    • 2003
  • We carry out reliability tests and investigate the failure mechanisms. of the wafer level vacuum packaged MEMS gyroscope sensor using an accelerated degradation test. The accelerated degradation test (ADT) is used to evaluate reliability (and/or life) of the MEMS vacuum package and to select the accelerated test conditions, which reduce the reliability testing time. Using the failure distribution model and stress-life model, we are able to estimate the average life time of the vacuum package, which is well agreed with the measured data. After improving several package reliability issues such as prevention of gas diffusion through package, we carry out another set of accelerated tests at the chosen acceleration level. The results show that reliability of the vacuum packaged gyroscope has been greatly improved and can survive without degradation of performance, which is the Q-factor in gyroscope sensor, during environmental stress reliability tests.

  • PDF

Deformation Behavior of MEMS Gyroscope Package Subjected to Temperature Change (온도변화에 따른 MEMS 자이로스코프 패키지의 미소변형 측정)

  • Joo Jin-Won;Choi Yong-seo;Choa Sung-Hoon;Kim Jong-Seok;Jeong Byung-Gil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.13-22
    • /
    • 2004
  • In MEMS devices, packaging induced stress or stress induced structure deformation become increasing concerns since it directly affects the performance of the device. In this paper, deformation behavior of MEMS gyroscope package subjected to temperature change is investigated using high-sensitivity moire interferometry. Using the real-time moire setup, fringe patterns are recorded and analyzed at several temperatures. Temperature dependent analyses of warpages and extensions/contractions of the package are presented. Linear elastic behavior is documented in the temperature region of room temperature to $125^{\circ}C$. Analysis of the package reveals that global bending occurs due to the mismatch of thermal expansion coefficient between the chip, the molding compound and the PCB. Detailed global and local deformations of the package by temperature change are investigated, concerning the variation of natural frequency of MEMS gyro chip.

  • PDF

Development of a single-structured MEMS gyro-accelerometer

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.592-595
    • /
    • 2004
  • This paper presents a study on the development of a multi-sensing inertial sensor with a single mechanical structure, which can be used both as a gyroscope and an accelerometer. The proposed MEMS gyro-accelerometer is designed to detect the angular rate and the acceleration at the same time using two separate detection circuits for one proof mass. In this study, the detection and signal processing circuit for an effective signal processing of different inertial measurements is designed, fabricated, and tested. The experimental results show that the performances of the gyro-accelerometer have resolutions of 1mg and 0.025deg/sec and nonlinearities of less than 0.5% for the accelerometer and the gyroscope, respectively, which are similar results with those of sensors with different structures and different detection circuits. The size of the sensor is reduced almost by 50% comparing with the sensors of separated proof mass.

  • PDF

The Extraction Method for the G-Sensitivity Scale-Factor Error of a MEMS Vibratory Gyroscope Using the Inertial Sensor Model (관성센서 오차 모델을 이용한 진동형 MEMS 자이로스코프 G-민감도 환산계수 오차 추출 기법)

  • Park, ByungSu;Han, KyungJun;Lee, SangWoo;Yu, MyeongJong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.6
    • /
    • pp.438-445
    • /
    • 2019
  • In this paper, we present a new approach to extract the g-sensitivity scale-factor error for a MEMS gyroscope. MEMS gyroscopes, based on the use of both angular momentum and the Coriolis effect, have a g-sensitivity error due to mass unbalance. Generally, the g-sensitivity error is not considered in general use of gyroscopes, but it deserves our attention if we are to develop for tactical class performance and reliability. The g-sensitivity error during vehicle flight increases navigation error; so it must be analyzed and compensated for the use of MEMS IMU for high dynamics vehicle systems. Therefore, we analyzed how to extract the g-sensitivity scale-factor error from the inertial sensor error model. Furthermore we propose a new method to extract the g-sensitivity error using flight motion simulator. We verified our proposed method with experimental results.

On the control of vibratory MEMS gyroscopes

  • Choura, S.;Aouni, N.;El-Borgi, S.
    • Smart Structures and Systems
    • /
    • v.6 no.7
    • /
    • pp.793-810
    • /
    • 2010
  • This paper addresses the control issue of vibratory MEMS-based gyroscopes. This study considers a gyroscope that can be modeled by an inner mass attached to an outer mass by four springs and four dampers. The outer mass itself is attached to the rotating frame by an equal number of springs and dampers. In order to measure the angular rate of the rotating frame, a driving force is applied to the inner mass and the Coriolis force is sensed along the y-direction associated with the outer mass. Due to micro-fabrication imperfections, including anisoelasticity and damping effects, both gyroscopes do not allow accurate measurements, and therefore, it becomes necessary to devise feedback controllers to reduce the effects of such imperfections. Given an ideal gyroscope that meets certain performance specifications, a feedback control strategy is synthesized to reduce the error dynamics between the actual and ideal gyroscopes. For a dual-mass gyroscope, it is demonstrated that the error dynamics are remarkably decreased with the application of four actuators applied to both masses in the x and y directions. It is also shown that it is possible to reduce the error dynamics with only two actuators applied to the outer mass only. Simulation results are presented to prove the efficiency of the proposed control design.