• Title/Summary/Keyword: MEC (Mobile Edge Computing)

Search Result 53, Processing Time 0.031 seconds

An Efficient Software Defined Data Transmission Scheme based on Mobile Edge Computing for the Massive IoT Environment

  • Kim, EunGyeong;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.974-987
    • /
    • 2018
  • This paper presents a novel and efficient data transmission scheme based on mobile edge computing for the massive IoT environments which should support various type of services and devices. Based on an accurate and precise synchronization process, it maximizes data transmission throughput, and consistently maintains a flow's latency. To this end, the proposed efficient software defined data transmission scheme (ESD-DTS) configures and utilizes synchronization zones in accordance with the 4 usage cases, which are end node-to-end node (EN-EN), end node-to-cloud network (EN-CN), end node-to-Internet node (EN-IN), and edge node-to-core node (EdN-CN); and it transmit the data by the required service attributes, which are divided into 3 groups (low-end group, medium-end group, and high-end group). In addition, the ESD-DTS provides a specific data transmission method, which is operated by a buffer threshold value, for the low-end group, and it effectively accommodates massive IT devices. By doing this, the proposed scheme not only supports a high, medium, and low quality of service, but also is complied with various 5G usage scenarios. The essential difference between the previous and the proposed scheme is that the existing schemes are used to handle each packet only to provide high quality and bandwidth, whereas the proposed scheme introduces synchronization zones for various type of services to manage the efficiency of each service flow. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of throughput, control message overhead, and latency. Therefore, the proposed ESD-DTS is very suitable for upcoming 5G networks in a variety of massive IoT environments with supporting mobile edge computing (MEC).

Wireless Caching Algorithm Based on User's Context in Smallcell Environments (소형셀 환경에서 사용자 컨텍스트 기반 무선 캐시 알고리즘)

  • Jung, Hyun Ki;Jung, Soyi;Lee, Dong Hak;Lee, Seung Que;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.789-798
    • /
    • 2016
  • In this paper, we propose a cache algorithm based on user's context for enterprise/urban smallcell environments. The smallcell caching method is to store mobile users' data traffic at a storage which is equipped in smallcell base station and it has an effect of reducing core networks traffic volume. In our algorithm, contrary to existing smallcell cache algorithms, the cache storage is equipped in a edge server by using a concept of the Mobile Edge Computing. In order to reflect user's characteristics, the edge server classifies users into several groups based on user's context. Also the edge server changes the storage size and the cache replacement frequency of each group to improve the cache efficiency. As the result of performance evaluation, the proposed algorithm can improve the cache hit ratio by about 11% and cache efficiency by about 5.5% compared to the existing cache algorithm.

A Study on MEC-based V2P system to improve energy efficiency of mobile phones (보행자 휴대폰의 에너지 효율 향상을 위한 MEC 기반 V2P 시스템 연구)

  • Bang, Soo-Jeong;Lee, Mee-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.51-54
    • /
    • 2021
  • 본 논문은 차량과 보행자 간 충돌 사고를 예측하는 V2P(Vehicle to Pedestrian) 서비스에서 보행자 휴대기기의 데이터 전송 시점을 동적으로 계산함으로써 불필요한 통신을 감소시켜 에너지 효율을 향상시키는 것을 목적으로 하며, MEC(Mobile Edge Computing) 기반 V2P 서비스를 제안하였다. V2P 서비스에서는 보행자와 차량 간 충돌 가능성을 예측하기 위하여 두 객체의 실시간 GPS 데이터가 요구된다. 이때 보편적으로 보행자에 비해 차량의 이동속도가 더 빠르기 때문에 보행자가 빠르게 이동해 들어오는 주변 차량에 발견될 수 있기 위해서는 자신의 위치에는 의미 있는 변화가 발생하지 않았더라도 차량 이동속도에 맞춘 빠른 주기로 차량 혹은 중앙 클라우드 서버로 자신의 데이터를 송신해야만 한다. 이 과정에서 보행자 휴대폰의 에너지가 급속하게 소모된다. 따라서 본 연구는 이러한 문제를 해결하기 위하여 MEC 서버를 배치한 V2P 서비스를 제안하였고, 보행자가 본인의 상태 정보를 활용하여 효율적인 다음 데이터 전송 시점을 계산할 수 있는 동적시점계산 알고리즘을 제안하였다.

Task Scheduling Using Deep Reinforcement Learning in Mobile Edge Computing-based Smart Factory Environment (MEC 기반 스마트 팩토리 환경에서 DRL를 이용한 태스크 스케줄링)

  • Koo, Seolwon;Lim, Yujin
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.147-150
    • /
    • 2022
  • 최근 들어 다양한 제약 조건이 있는 스마트 시티나 스마트 팩토리와 같은 도메인들 내에서 태스크들을 효과적으로 처리하기 위해서 MEC 기술이 많이 사용되고 있다. 그러나 이러한 도메인에서 발생하는 복잡하고 동적인 시나리오는 기존의 휴리스틱이나 메타 휴리스틱 기법을 이용하여 해결하기엔 계산 복잡도가 증가하는 문제점을 가지고 있다. 따라서 최근 들어 이러한 문제점을 해결하기 위한 방법 중 하나로 강화학습과 딥러닝이 결합된 DRL 기법이 주목을 받고 있다. 본 연구는 스마트 팩토리 환경에서 종속성을 가진 태스크들이 실행시간과 태스크가 처리되는 MEC 서버들의 로드 표준편차를 최소화하는 태스크 스케줄링 기법을 제안한다. 모의실험을 통하여 제안 기법은 태스크가 증가하는 동적인 환경에서도 좋은 성능을 보임을 증명하였다.

Correlation Analysis of Connected Car Realtime Inhibition In Mobile Edge Computing Environment (모바일 엣지 환경에서 커넥티드카 실시간성 저해의 상관 관계 분석)

  • Jang, JuneBeom;Choi, HeeSeok;Yu, HeonChang
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.118-120
    • /
    • 2019
  • 커넥티드카는 네트워크에 연결된 자동차가 다른 자동차 및 도로 인프라뿐만 아니라 스마트 디바이스와 통신하고 여러 소스로부터 실시간 데이터를 수집하여 다양한 서비스를 제공하는 것이다. 커넥티드카의 등장으로 인해서 자동차와 클라우드 서비스의 결합이 빠르게 진행되고 있으나 자동차 데이터 중 실시간 처리가 필수인 데이터가 많다는 특성이 있다. 그러므로 멀리 떨어진 중앙 집중식 서버에서 컴퓨팅을 하는 클라우드 컴퓨팅보다 최근 이슈가 되고 있는 디바이스와 가까운 가장자리에 위치한 서버에서 컴퓨팅을 하는 엣지 컴퓨팅이 커넥티드카의 실시간성을 보장하는 기술로 많은 관심을 받고 있다. 본 논문에서는 기존의 엣지 컴퓨팅과는 달리, 이동성이 있는 모바일 엣지 컴퓨팅(MEC) 환경에서 실시간 처리를 저해하는 요소를 찾아 원인을 분석하고 평가해 문제점을 해결하고자 한다. 먼저, MEC 환경을 구축한 후 오픈 소스 시뮬레이터인 Edge Cloudsim 에 적용시켜 시뮬레이션을 한다. 실험 결과 MEC 환경에서 실시간 처리를 저해하는 원인은 모바일 디바이스의 태스크가 오프로딩 되거나 응답을 받기 전 WLAN 의 범위를 벗어났을 때 Task Failure가 발생하기 때문임이 증명되었다.

Analysis of time-series user request pattern dataset for MEC-based video caching scenario (MEC 기반 비디오 캐시 시나리오를 위한 시계열 사용자 요청 패턴 데이터 세트 분석)

  • Akbar, Waleed;Muhammad, Afaq;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.24 no.1
    • /
    • pp.20-28
    • /
    • 2021
  • Extensive use of social media applications and mobile devices continues to increase data traffic. Social media applications generate an endless and massive amount of multimedia traffic, specifically video traffic. Many social media platforms such as YouTube, Daily Motion, and Netflix generate endless video traffic. On these platforms, only a few popular videos are requested many times as compared to other videos. These popular videos should be cached in the user vicinity to meet continuous user demands. MEC has emerged as an essential paradigm for handling consistent user demand and caching videos in user proximity. The problem is to understand how user demand pattern varies with time. This paper analyzes three publicly available datasets, MovieLens 20M, MovieLens 100K, and The Movies Dataset, to find the user request pattern over time. We find hourly, daily, monthly, and yearly trends of all the datasets. Our resulted pattern could be used in other research while generating and analyzing the user request pattern in MEC-based video caching scenarios.

A Privacy-preserving and Energy-efficient Offloading Algorithm based on Lyapunov Optimization

  • Chen, Lu;Tang, Hongbo;Zhao, Yu;You, Wei;Wang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2490-2506
    • /
    • 2022
  • In Mobile Edge Computing (MEC), attackers can speculate and mine sensitive user information by eavesdropping wireless channel status and offloading usage pattern, leading to user privacy leakage. To solve this problem, this paper proposes a Privacy-preserving and Energy-efficient Offloading Algorithm (PEOA) based on Lyapunov optimization. In this method, a continuous Markov process offloading model with a buffer queue strategy is built first. Then the amount of privacy of offloading usage pattern in wireless channel is defined. Finally, by introducing the Lyapunov optimization, the problem of minimum average energy consumption in continuous state transition process with privacy constraints in the infinite time domain is transformed into the minimum value problem of each timeslot, which reduces the complexity of algorithms and helps obtain the optimal solution while maintaining low energy consumption. The experimental results show that, compared with other methods, PEOA can maintain the amount of privacy accumulation in the system near zero, while sustaining low average energy consumption costs. This makes it difficult for attackers to infer sensitive user information through offloading usage patterns, thus effectively protecting user privacy and safety.

Performance Comparison of Task Partitioning Methods in MEC System (MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.139-146
    • /
    • 2022
  • With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.

Energy-efficient offloading to ensure reliability in IIoT scenarios (IIoT 시나리오에서 신뢰성을 보장하는 에너지 효율적인 오프로딩)

  • Koo, Seolwon;Lim, Yujin
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.70-73
    • /
    • 2021
  • Mobile Edge Computing(MEC)는 사용자 근처에서 서비스를 제공하기 때문에 사물인터넷에서 주목받고 있는 기술이다. 오프로딩을 통한 MEC 서버의 활용은 제한된 배터리 수명이나 계산 능력을 갖는 디바이스들에게 매우 유용하다. 본 논문은 강한 신뢰도가 요구되는 산업 사물인터넷(Industrial IoT, IIoT) 시나리오를 가정하여, 태스크를 실행할 때 발생하는 에너지 소모량과 지연시간을 최적화하며 신뢰도를 보장하는 오프로딩 기법을 제시한다. 본 연구는 실험을 통해 에너지 소모량과 신뢰성 측면에서 제안 기법의 성능을 분석하였다.

Transformation of the Music Market brought about by Technology (테크놀로지가 가져온 음악 시장의 변혁)

  • kim, Joy
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.537-541
    • /
    • 2022
  • As technology advances, various applications linked to the music industry are becoming popular through new media. There have been many changes in the music market. Beyond the existing music market, where music copyright and performance rights were the center of the music business, we are unifying and operating communication channels that connect artists and fans, such as investment products derived from music copyrights. The technology that connects the fandom with additional business digital content has transformed into global platforms such as HYBE Entertainment's and YG Entertainment's Weverse, as well as SM Entertainment's Bubble. In addition, various national support projects to build a 5G MEC (MobileEdge Computing) environment to quickly respond to the rapidly changing 5G industry ecosystem are supporting for the immersive content demonstration, immersive content testing, and technical analysis, we are laying the groundwork to efficiently respond to the ever-expanding metaverse content market. Technology is changing dramatically. Therefore, we would like to study to changes in the music market brought about by technology and suggest strategies for a new era in the music business.