• Title/Summary/Keyword: MEA Degradation

Search Result 56, Processing Time 0.025 seconds

Effect of Compensation for Thickness Reduction by Chemical Degradation of PEMFC Membrane on Performance and Durability (PEMFC 고분자막의 화학적인 열화에 의한 두께 감소 보정이 성능 및 내구성에 미치는 영향)

  • Sohyeong Oh;Yoojin Kim;Seungtae Lee;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • As the demand for hydrogen electric vehicles for commercial vehicles increases, the durability of PEMFCs must increase more than five times that of passenger cars, so research and development to improve durability is urgent. When the PEMFC membrane electrode assembly (MEA) undergoes chemical degradation, the MEA thickness decreases and pinholes occur. In this study, changes in the performance and durability of the MEA were measured while increasing the clamping pressure of the unit cell after open circuit voltage (OCV) holding, an accelerated chemical degradation experiment. As the clamping pressure increased, the resistance of the polymer membrane and the membrane/electrode contact resistance decreased, improving the I-V performance and reducing the hydrogen permeability. As the hydrogen permeability decreased, the OCV increased. When the pinhole area was removed and the MEA clamping pressure was increased, the hydrogen permeability decreased sharply, confirming that the local degradation has a large effect on the performance and durability of the entire cell. When the pinhole was removed and re-clamping and OCV holding was evaluated, it was confirmed that the durability improved according to the decrease in membrane resistance and hydrogen permeability.

Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures (상이한 화학적 구조를 가진 이산화탄소 흡수제의 열화특성)

  • Kim, Jun-Han;Lee, Ji-Hyun;Jang, Kyung-Ryong;Shim, Jae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.883-892
    • /
    • 2009
  • We evaluated the degradation properties of various alkanolamine absorbents (MEA, AMP, DEA, and MDEA) having different chemical structures for $CO_2$ capture. The degradation of $CO_2$ absorbent in general was known to be caused by oxygen which is in flue gas and by heat source, respectively. To analyze the effect of $CO_2$ and $O_2$ on degree of degradation, we conducted a variety of experiments at $30^{\circ}C$ and $60^{\circ}C$ (oxidative degradation) and $130^{\circ}C$ and $150^{\circ}C$ (thermal degradation), respectively. DEA showed the worst property for oxidative degradation in the presence of oxygen among the alkanolamine absorbents. In the case of thermal degradation, the degradation of absorbent was occurred for most of absorbents at $150^{\circ}C$. Among these absorbents, MEA and DEA gave the worst results. As a result, AMP which is a primary amine and having a steric hindrance showed the best result through the degradation test. But, the degradation of absorbent proceeded easily in the case of DEA which is a secondary amine and having 2 OH groups in terminal position. Consequently, we have evaluated the degree of degradation of various absorbents having different chemical structures to give the basic data for the development of alkanolamine absorbent.

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA (가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화)

  • Kim, Young-Sook;Chu, Cheun-Ho;Jeong, Jae-Jin;Ahn, Myung-Won;Na, Il-Chai;Lee, Jeong-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

Decrease of PEMFC Performance by Ion Contamination (이온 오염에 의한 고분자전해질 연료전지의 성능저하)

  • Song, Jinhoon;Woo, Myungwu;Kim, Saehoon;Ahn, Byungki;Lim, Taewon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.187-190
    • /
    • 2012
  • Contamination of ion from cathode air on the membrane and electrode assembly (MEA) is the serious degradation source in proton exchange membrane fuel cells (PEMFC). In this study, concentration of ions in air at industry region, street and seaside were measured. There were comparably high concentration of $Na^+$, $K^+$, $Ca^{2+}$ and $Fe^{3+}$ in this regions. This paper shows the effects of MEA contamination by these ions generated from humidification water. After 170 hours of fuel cell operation using city water as humidification water, the performance of unit cell decrease to 11% of initial performance. The electrolyte membrane easily absorbed foreign contaminant cations due to the stronger affinity of foreign cations with the sulfonic acid group compared to $H^+$. The contaminant ions existing in the interface between the platinum catalyst and ionomer layer turn out to be the most serious factor to decrease cell performance.

The thermal cycle degration of MEA in PEMFC under cold start condition (냉시동 환경에서 thermal cycle이 FEMFC의 MEA 열화에 미치는 영향)

  • Rhee, Jun-Kee;Seo, Dong-Ho;Jeon, Yu-Kwon;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.412-414
    • /
    • 2009
  • In recent times, starting up polymer electrolyte membrane fuel cells(PEMFC) in sub-zero condition is a great challenge of fuel cell electric vehicle(FCEV). The water produced in a cathode during PEMFCs operate. The water changes into the form of solid/ice in sub-zero temperatures and this makes trouble in PEMFC cells. Voltage of PEMFC drops and cold startup is failed. This paper describes an experimental study on the effect of thermal cycle to degradation of MEA in PEMFC.

  • PDF

Diagnosis of Performance Degradation of Direct Methanol Fuel Cell Stack after Long-Term Operation (장기운전에 의한 직접메탄올 연료전지 스택의 성능 열화 분석)

  • Kim, Sang-Kyung;Hyun, Min-Soo;Lee, Byung-Rok;Jung, Doo-Hwan;Peck, Dong-Hyun;Lim, Seong-Yop
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.775-780
    • /
    • 2011
  • 5-cell DMFC stack was fabricated and operated with the load of 4 A for 4000 hrs. After 4000 hrs operation peak power density of the stack reduced by 27.3%. Two of the five cells did now show performance degradation, the performance of other two was reduced by 40% and the performance of the other decreased by 60%. The amount of performance degradation of each cell by long-term operation did not correlate with the position in the stack. Platinum particle size in the anode catalyst layer of the MEA with the strongest degradation increased and the increase was severer on the position of methanol inlet than on the position of methanol outlet. However, platinum particle size in the cathode catalyst layers did not changed for all the MEA'. Ruthenium crossover from the anode catalyst layer to the cathode catalyst layer through the membrane was observed after 4,000 hrs operation by SEM-EDX and it occurred for all MEA' regardless of the degree of performance degradation. Atomic ratio of ruthenium to platinum in the cathode catalyst layer was the highest in the MEA with the strongest performance degradation.

Impurities in the methanol fuel on the performance of direct methanol fuel cell (직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물)

  • Peck, Dong-Hyun;Lee, Jae-Hyuk;Park, Young-Chul;Lim, Seongyop;Kim, Sang-Kyung;Jung, Doo-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC (고분자전해질 연료전지에서 기체 크로마토그래프에 의한 수소투과도 측정)

  • Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.425-429
    • /
    • 2014
  • Until a recent day, degradation of PEMFC MEA(membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. Hydrogen permeability was used often to measure degradation of electrolyte membrane in PEMFC. In case of hydrogen permeability measured by LSV(Linear Sweep Voltammetry) method, the degradation of electrode decrease the value of hydrogen crossover current due to LSV methode's dependence on electrode active area. In this study hydrogen permeability was measured by gas chromatograph(GC) when membrane and electrode degraded at the same time. It was showed that degradation of electrode did not affect the hydrogen permeability measured by GC because of GC methode's independence on electrode active area.

Acceleration Test of Membrane-Electrode Assembly in PEMFC (고분자연료전지의 전해질-전극 접합체의 열화 가속시험)

  • Lee, Jung-Hun;Yoon, Young-Gi;Jung, Eun-Ha;Lee, Won-Yong;Kim, Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.93-96
    • /
    • 2007
  • Recently, much attentions have been paid on the commercialization of PEMFC, especially for the applications of residential and portable. In order to achieve the early commercialization of PEMFC, thee are two hurdles to overcome. One is cost down and the other is improvement of durability of the system components. Numerous companies have tried to reduce the production cost and the main research topics have been changed from performance to durability improvement. In this work, acceleration test were performed to find and evaluate the main reason of degradation of the MEA(membrane-electrode assembly) which is one of the core component of the PEMFC system. Based upon the test results, a way to make durable MEA was suggested. Acceleration tests were made by applying high voltage of 1.2V to the several kinds of single cells to increase the growth of catalyst particles. Cell performance, ac-impedance and electrochemically active area measurements were made atfter every 8 hours of acceleration test. Degradations of catalyst and membrane were examined by SEM, TEM and XRD. Obtained results were discussed in terms of structural stability and loss of catalyt and ionomers in the electrode layer. In addition, the way to make highly durable MEA was suggested.

  • PDF